Formal solutions of completely integrable Pfaffian systems with normal crossings

被引:2
作者
Barkatou, Moulay A. [1 ,2 ]
Aroschek, Maximilian J. [3 ]
Maddah, Suzy S. [4 ]
机构
[1] Univ Limoges, DMI, XLIM UMR 7252, 123 Ave Albert Thomas, F-87060 Limoges, France
[2] CNRS, 123 Ave Albert Thomas, F-87060 Limoges, France
[3] Max Planck Inst Informat, Saarland Informat Campus E1 4, D-66123 Saarbrucken, Germany
[4] Fields Inst, 222 Coll St, Toronto, ON M5T 3J1, Canada
关键词
Linear systems of partial differential equations; Pfaffian systems; Formal solutions; Rank reduction; Hukuhara-Turrittin's normal form; Normal crossings; ALGORITHM;
D O I
10.1016/j.jsc.2016.11.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present an algorithm for computing a fundamental matrix of formal solutions of completely integrable Pfaffian systems with normal crossings in several variables. This algorithm is a generalization of a method developed for the bivariate case based on a combination of several reduction techniques and is partially(2) implemented in the computer algebra system MAPLE. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:41 / 68
页数:28
相关论文
共 32 条
[11]  
Barkatou MA, 2007, ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, P1
[12]   PFAFFS EQUATIONS OF MOTION IN DYNAMICS - APPLICATIONS TO SATELLITE THEORY [J].
BROUCKE, R .
CELESTIAL MECHANICS, 1978, 18 (03) :207-222
[13]  
Charriere H., 1980, ANN SC NORM SUPER PI, V7, P625
[14]  
Deligne P., 1970, Equations differentielles a points singuliers reguliers, DOI DOI 10.1007/BFB0061194
[15]  
Delphenich D., 2012, ROLE INTEGRABILITY L
[16]  
Gerard R., 1981, ANALYSIS, V1, P85
[17]  
Gerard R., 1979, Lecture Notes in Math., V712, P131
[18]   The holonomic gradient method for the distribution function of the largest root of a Wishart matrix [J].
Hashiguchi, Hiroki ;
Numata, Yasuhide ;
Takayama, Nobuki ;
Takemura, Akimichi .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 117 :296-312
[19]  
LeRoux N., 2006, P INT S SYMB ALG COM, P204
[20]  
LeRoux N., 2006, THESIS