Formal solutions of completely integrable Pfaffian systems with normal crossings

被引:2
作者
Barkatou, Moulay A. [1 ,2 ]
Aroschek, Maximilian J. [3 ]
Maddah, Suzy S. [4 ]
机构
[1] Univ Limoges, DMI, XLIM UMR 7252, 123 Ave Albert Thomas, F-87060 Limoges, France
[2] CNRS, 123 Ave Albert Thomas, F-87060 Limoges, France
[3] Max Planck Inst Informat, Saarland Informat Campus E1 4, D-66123 Saarbrucken, Germany
[4] Fields Inst, 222 Coll St, Toronto, ON M5T 3J1, Canada
关键词
Linear systems of partial differential equations; Pfaffian systems; Formal solutions; Rank reduction; Hukuhara-Turrittin's normal form; Normal crossings; ALGORITHM;
D O I
10.1016/j.jsc.2016.11.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present an algorithm for computing a fundamental matrix of formal solutions of completely integrable Pfaffian systems with normal crossings in several variables. This algorithm is a generalization of a method developed for the bivariate case based on a combination of several reduction techniques and is partially(2) implemented in the computer algebra system MAPLE. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:41 / 68
页数:28
相关论文
共 32 条
[1]  
Abbas H., 2014, P INT S SYMB ALG COM, P312
[2]  
Abbas H., 2014, P 39 INT S SYMB ALG, P320
[3]  
BALSER W., 2000, Formal power series and linear systems of meromorphic ordinary differential equations
[4]  
Barkatou A., 1995, Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC '95, P297, DOI 10.1145/220346.220385
[5]   An algorithm computing the regular formal solutions of a system of linear differential equations [J].
Barkatou, M ;
Pflügel, E .
JOURNAL OF SYMBOLIC COMPUTATION, 1999, 28 (4-5) :569-587
[6]  
Barkatou M., 2010, INT S SYMB ALG COMP, P7
[7]  
Barkatou M., 2007, COMPUTER ALGEBRA, P22
[8]  
Barkatou M.A., 2012, P INT S SYMB ALG COM, P43
[9]   An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system [J].
Barkatou M.A. .
Applicable Algebra in Engineering, Communication and Computing, 1997, 8 (1) :1-23
[10]   On k-simple forms of first-order linear differential systems and their computation [J].
Barkatou, Moulay A. ;
El Bacha, Carole .
JOURNAL OF SYMBOLIC COMPUTATION, 2013, 54 :36-58