Black-Scholes options pricing model

被引:0
作者
Slacálek, J [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
FINANCE A UVER | 2000年 / 50卷 / 02期
关键词
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper deals with the most widespread model of options pricing, the Black-Scholes model. The model is derived in the usual way, by means of Ito's lemma. The Black-Scholes partial differential equation is obtained under the assumption of geometric Brownian motion of the underlying stock. Several useful generalizations, including a brief overview of risk-neutral pricing, are discussed. The last section contains an empirical test of this model using daily data from the Chicago Board Options Exchange. The appendix gives a thumbnail sketch of the fundamental results of stochastic differential calculus.
引用
收藏
页码:78 / 96
页数:39
相关论文
共 20 条
  • [1] [Anonymous], 1975, Stochastic differential equations and applications
  • [2] BARTAK J, 1988, PARCIALNI DIFERENCIA, V2
  • [3] PRICING OF OPTIONS AND CORPORATE LIABILITIES
    BLACK, F
    SCHOLES, M
    [J]. JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) : 637 - 654
  • [4] Cox DR., 1965, The Theory of Stochastic Proceesses, DOI DOI 10.1016/J.PHYSA.2011
  • [5] VALUATION OF OPTIONS FOR ALTERNATIVE STOCHASTIC-PROCESSES
    COX, JC
    ROSS, SA
    [J]. JOURNAL OF FINANCIAL ECONOMICS, 1976, 3 (1-2) : 145 - 166
  • [6] A THEORY OF THE TERM STRUCTURE OF INTEREST-RATES
    COX, JC
    INGERSOLL, JE
    ROSS, SA
    [J]. ECONOMETRICA, 1985, 53 (02) : 385 - 407
  • [7] Cox John C., 1985, OPTIONS MARKETS
  • [8] Dixit K., 1994, INVESTMENT UNCERTAIN
  • [9] Dothan Michael U, 1990, PRICES FINANCIAL MAR
  • [10] Duffie D., 1988, Security Markets: Stochastic Models