Decompositions of fundamental groups of closed surfaces into free constructions

被引:0
作者
Bogopolski, O [1 ]
机构
[1] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
surface; fundamental group; amalgamated product; HNN-extension; geometric decomposition; edge rigidity;
D O I
10.1023/A:1020964811554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a closed surface. It is proven that any decomposition of pi(1)(T,x) into an amalgamated product (or, more generally, into the fundamental group of a finite graph of groups) with f.g. edge group(s) is almost geometric. A problem of H. Zieschang is solved and the edge rigidity property is investigated.
引用
收藏
页码:63 / 89
页数:27
相关论文
共 16 条
[1]  
[Anonymous], 1980, LECT NOTES MATH
[2]   On the uniqueness of factors of amalgamated products [J].
Bogopolski, O ;
Weidmann, R .
JOURNAL OF GROUP THEORY, 2002, 5 (02) :233-240
[3]  
BOGOPOLSKI O, 2001, ALGEBRA LOGIKA, V40, P30
[4]  
BOGOPOLSKI O, 2001, ALGEBRA LOGIC, V40, P17
[5]   WHAT DOES A BASIS OF F (A,B) LOOK LIKE [J].
COHEN, M ;
METZLER, W ;
ZIMMERMANN, A .
MATHEMATISCHE ANNALEN, 1981, 257 (04) :435-445
[6]  
GREENBERG L, 1960, CAN J MATH, V12, P415
[7]   COSET REPRESENTATIONS IN FREE GROUPS [J].
HALL, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 67 (NOV) :421-432
[8]  
HENDRIKS H, 1979, MATH CTR TRACTS AMST, V115, P117
[9]  
Lyndon R. C., 1977, Combinatorial group theory, V89
[10]  
LYNDON RC, 1978, HOUSTON J MATH, V4, P91