Genetic evaluation of dairy cattle using test day yields and random regression model

被引:189
|
作者
Jamrozik, J
Schaeffer, LR
Dekkers, JCM
机构
[1] Ctr. Genetic Improvement Livestock, Dept. of Animal and Poultry Science, University of Guelph, Guelph
[2] Dept. of Genet. and Animal Breeding, Agricultural Academy, 30-059 Krakow
基金
加拿大自然科学与工程研究理事会;
关键词
random regression model; genetic evaluation; test day yields; persistency;
D O I
10.3168/jds.S0022-0302(97)76050-8
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
A model for analyzing test day records that contains both fixed and random regression coefficients was applied to the genetic evaluation of first lactation data for Canadian Holstein dairy cows. Data were 5.1 million test day records with milk, fat, and protein yields from calvings between 1988 and 1995 from herds in four regions of Canada. Each evaluated animal received five predictions for each trait representing the random regression coefficients. From these solutions, a range of estimated breeding values for various parts of the lactation could be calculated. Three genetic measures of persistency were compared. Bulls could be selected for both yields and persistency of their daughters in whatever combination was desirable. Test day analyses could result in monthly genetic evaluations for yield traits.
引用
收藏
页码:1217 / 1226
页数:10
相关论文
共 50 条
  • [21] Random regression test-day model for the analysis of dairy cattle production data in South Africa: Creating the framework
    Dzomba, E. F.
    Nephawe, K. A.
    Maiwashe, A. N.
    Cloete, S. W. P.
    Chimonyo, M.
    Banga, C. B.
    Muller, C. J. C.
    Dzama, K.
    SOUTH AFRICAN JOURNAL OF ANIMAL SCIENCE, 2010, 40 (04) : 273 - 284
  • [22] Application of single-step genomic evaluation using multiple-trait random regression test-day models in dairy cattle
    Oliveira, H. R.
    Lourenco, D. A. L.
    Masuda, Y.
    Misztal, I
    Tsuruta, S.
    Jamrozik, J.
    Brito, L. F.
    Silva, F. F.
    Schenkel, F. S.
    JOURNAL OF DAIRY SCIENCE, 2019, 102 (03) : 2365 - 2377
  • [23] Genetic parameters for milk yield and persistency in Carora dairy cattle breed using random regression model
    Tullo, Emanuela
    Biffani, Stefano
    Maltecca, Christian
    Rizzi, Rita
    ITALIAN JOURNAL OF ANIMAL SCIENCE, 2014, 13 (04) : 825 - 829
  • [24] Comparison of possible covariates for use in a random regression model for analyses of test day yields
    Jamrozik, J
    Kistemaker, GJ
    Dekkers, JCM
    Schaeffer, LR
    JOURNAL OF DAIRY SCIENCE, 1997, 80 (10) : 2550 - 2556
  • [25] Genetic parameters for first and second lactation milk yields of polish black and white cattle with random regression test-day models
    Strabel, T
    Misztal, I
    JOURNAL OF DAIRY SCIENCE, 1999, 82 (12) : 2805 - 2810
  • [26] Genetic analysis of somatic cell score in Norwegian cattle using random regression test-day models
    Odegård, J
    Jensen, J
    Klemetsdal, G
    Madsen, P
    Heringstad, B
    JOURNAL OF DAIRY SCIENCE, 2003, 86 (12) : 4103 - 4114
  • [27] Genetic parameters for first lactation dairy traits in the Alpine and Saanen goat breeds using a random regression test-day model
    Arnal, Mathieu
    Larroque, Helene
    Leclerc, Helene
    Ducrocq, Vincent
    Robert-Granie, Christele
    GENETICS SELECTION EVOLUTION, 2019, 51 (01)
  • [28] Genetic parameters for first lactation dairy traits in the Alpine and Saanen goat breeds using a random regression test-day model
    Mathieu Arnal
    Hélène Larroque
    Hélène Leclerc
    Vincent Ducrocq
    Christèle Robert-Granié
    Genetics Selection Evolution, 51
  • [29] Random regression test-day milk yield models as a suitable alternative to the traditional 305-day lactation model for genetic evaluation of Sahiwal cattle
    Prakash, Ved
    Gupta, A. K.
    Singh, M.
    Ambhore, G. S.
    Singh, A.
    Gandhi, R. S.
    INDIAN JOURNAL OF ANIMAL SCIENCES, 2017, 87 (03): : 340 - 344
  • [30] Impact of the Order of Legendre Polynomials in Random Regression Model on Genetic Evaluation for Milk Yield in Dairy Cattle Population
    Li, Jianbin
    Gao, Hongding
    Madsen, Per
    Li, Rongling
    Liu, Wenhao
    Bao, Peng
    Xue, Guanghui
    Gao, Yundong
    Di, Xueke
    Su, Guosheng
    FRONTIERS IN GENETICS, 2020, 11