On the Dirichlet problem of prescribed mean curvature equations without H-convexity condition

被引:11
作者
Hayasida, K [1 ]
Nakatani, M
机构
[1] Kanazawa Univ, Fac Sci, Dept Computat Sci, Kanazawa, Ishikawa 9201192, Japan
[2] Kanazawa Inst Technol, Kanazawa, Ishikawa 9218501, Japan
关键词
D O I
10.1017/S0027763000007248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Dirichlet problem of prescribed mean curvature equations is well posed, if the boundery is H-convex. In this article we eliminate the H-convexity condition from a portion Gamma of the boundary and prove the existence theorem, where the boundary condition is satisfied on Gamma in the weak sense.
引用
收藏
页码:177 / 209
页数:33
相关论文
共 23 条
[1]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[3]   DIRICHLET PROBLEM FOR SURFACES OF PRESCRIBED MEAN CURVATURE [J].
GIAQUINTA, M .
MANUSCRIPTA MATHEMATICA, 1974, 12 (01) :73-86
[4]  
Giusti E., 1976, ANN SCUOLA NORM SUP, V3, P501
[5]  
Gregori G, 1997, COMMUN PART DIFF EQ, V22, P581
[6]  
Ivochkina N., 1991, Leningr. Math. J, V2, P631
[7]  
JENKINS H, 1968, J REINE ANGEW MATH, V229, P170
[8]  
Jin ZR, 1997, INDIANA U MATH J, V46, P827
[9]  
KOREVAAR NJ, 1987, MATH Z, V197, P457
[10]   LOCAL ESTIMATES FOR GRADIENTS OF SOLUTIONS OF NON-UNIFORMLY ELLIPTIC AND PARABOLIC EQUATIONS [J].
LADYZHENSKAYA, OA ;
URALTSEV.NN .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1970, 23 (04) :677-+