Positive solutions for a weakly coupled nonlinear Schrodinger system

被引:287
作者
Maia, L. A. [1 ]
Montefusco, E.
Pellacci, B.
机构
[1] Univ Brasilia, Dept Matemat, BR-70910 Brasilia, DF, Brazil
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] Univ Naples, Dipartimento Sci Applicate, I-80133 Naples, Italy
关键词
nonlinear elliptic system; weakly coupled Schrodinger equations; least energy solution;
D O I
10.1016/j.jde.2006.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Existence of a nontrivial solution is established, via variational methods, for a system of weakly coupled nonlinear Schrodinger equations. The main goal is to obtain a positive solution, of minimal action if possible, with all vector components not identically zero. Generalizations for nonautonomous systems are considered. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:743 / 767
页数:25
相关论文
共 35 条
[1]   Variational perturbative methods and bifurcation of bound states from the essential spectrum [J].
Ambrosetti, A ;
Badiale, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :1131-1161
[2]   Bound and ground states of coupled nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Colorado, E .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) :453-458
[3]   Homoclinics: Poincare-Melnikov type results via a variational approach [J].
Ambrosetti, A ;
Badiale, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :233-252
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[6]  
AMBROSETTI A, 2006, STANDING WAVES SOME
[7]  
[Anonymous], 1974, Sov. Phys. JETP
[8]  
Badiale M, 2001, HOUSTON J MATH, V27, P649
[9]  
BATSCH T, 2006, NOTE GROUND STATE NO
[10]  
BENNEY DJ, 1996, STUD APPL MATH, V96, P1111