Resonance solitons as black holes in Madelung fluid

被引:91
作者
Pashaev, OK
Lee, JH
机构
[1] Izmir Inst Technol, Dept Math, TR-35437 Izmir, Turkey
[2] Acad Sinica, Inst Math, Taipei 11529, Taiwan
关键词
Nonlinear Schrodinger equation; soliton; black hole; quantum potential; Madelung fluid; acoustic metric; resonance; Jackiw-Teitelboim gravity;
D O I
10.1142/S0217732302007995
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Envelope solitons of the Nonlinear Schrodinger equation (NLS) under quantum potential's influence are studied. Corresponding problem is found to be integrable for an arbitrary strength, s not equal 1, of the quantum potential. For s < 1, the model is equivalent to the usual NLS with rescaled coupling constant, while for s > 1, to the reaction-diffusion system. The last one is related to the anti-de Sitter (AdS) space valued Heisenberg model, realizing a particular gauge fixing condition of the (1 + 1)-dimensional Jackiw-Teitelboim gravity. For this gravity model, by the Madelung fluid representation we derive the acoustic form of the space-time metric. The space-time points, where dispersion changes the sign, correspond to the event horizon, while the soliton solution to the AdS black hole. Moving with the above bounded velocity, it describes evolution on the one sheet hyperboloid with nontrivial winding number, and creates under collision, the resonance states which we study by the Hirota bilinear method.
引用
收藏
页码:1601 / 1619
页数:19
相关论文
共 34 条
[1]   SELF-FOCUSING AND DIFFRACTION OF LIGHT IN A NONLINEAR MEDIUM [J].
AKHMANOV, SA ;
SUKHORUKOV, AP ;
KHOKHLOV, RV .
SOVIET PHYSICS USPEKHI-USSR, 1968, 10 (05) :609-+
[2]   ON A CLASS OF HOMOGENEOUS NONLINEAR SCHRODINGER-EQUATIONS [J].
AUBERSON, G ;
SABATIER, PC .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :4028-4041
[3]   NONLINEAR CORRECTIONS TO QUANTUM-MECHANICS FROM QUANTUM-GRAVITY [J].
BERTOLAMI, O .
PHYSICS LETTERS A, 1991, 154 (5-6) :225-229
[4]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[5]  
CADONI M, HEPTH9803257
[6]   EVANESCENT BLACK-HOLES [J].
CALLAN, CG ;
GIDDINGS, SB ;
HARVEY, JA ;
STROMINGER, A .
PHYSICAL REVIEW D, 1992, 45 (04) :R1005-R1009
[7]   Passage of a wave pulse through a zero-dispersion point in the nonlinear Schrodinger equation [J].
Clarke, SR ;
Clutterbuck, J ;
Grimshaw, RHJ ;
Malomed, BA .
PHYSICS LETTERS A, 1999, 262 (06) :434-444
[8]  
de Broglie L, 1926, CR HEBD ACAD SCI, V183, P447
[9]   BLACK-HOLE DYONS NEED NOT EXPLODE [J].
GIBBONS, GW .
PHYSICAL REVIEW D, 1977, 15 (12) :3530-3535
[10]  
GUERRA F, 1982, LETT NUOVO CIMENTO, V34, P351