Gate-tunable frequency combs in graphene-nitride microresonators

被引:215
作者
Yao, Baicheng [1 ,2 ,7 ]
Huang, Shu-Wei [1 ,8 ,11 ]
Liu, Yuan [3 ,9 ,11 ]
Vinod, Abhinav Kumar [1 ,11 ]
Choi, Chanyeol [1 ]
Hoff, Michael [1 ]
Li, Yongnan [1 ]
Yu, Mingbin [4 ,10 ]
Feng, Ziying
Kwong, Dim-Lee [4 ,6 ]
Huang, Yu [3 ]
Rao, Yunjiang [2 ]
Duan, Xiangfeng [5 ]
Wong, Chee Wei [1 ]
机构
[1] Univ Calif Los Angeles, Fang Lu Mesoscop Opt & Quantum Elect Lab, Los Angeles, CA 90095 USA
[2] Univ Elect Sci & Technol China, Educ Minist China, Key Lab Opt Fiber Sensing & Commun, Chengdu, Sichuan, Peoples R China
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA
[4] Inst Microelect, Singapore, Singapore
[5] Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA
[6] Inst Infocomm Res, Singapore, Singapore
[7] Univ Cambridge, Cambridge Graphene Ctr, Cambridge, England
[8] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[9] Hunan Univ, Sch Phys & Elect, Changsha, Hunan, Peoples R China
[10] Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai, Peoples R China
[11] Shanghai Ind Technol Res Inst, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41586-018-0216-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical frequency combs, which emit pulses of light at discrete, equally spaced frequencies, are cornerstones of modern-day frequency metrology, precision spectroscopy, astronomical observations, ultrafast optics and quantum information(1-7). Chip scale frequency combs, based on the Kerr and Raman nonlinearities in monolithic microresonators with ultrahigh quality factors(8-10), have recently led to progress in optical clockwork and observations of temporal cavity solitons(11-14). But the chromatic dispersion within a laser cavity, which determines the comb formation(15-16), is usually difficult to tune with an electric field, whether in microcavities or fibre cavities. Such electrically dynamic control could bridge optical frequency combs and optoelectronics, enabling diverse comb outputs in one resonator with fast and convenient tunability. Arising from its exceptional Fermi-Dirac tunability and ultrafast carrier mobility(17-19), graphene has a complex optical dispersion determined by its optical conductivity, which can be tuned through a gate voltage(20,21). This has brought about optoelectronic advances such as modulators(22,23), photodetectors' and controllable plasmonics(25,26). Here we demonstrate the gated intracavity tunability of graphene-based optical frequency combs, by coupling the gate-tunable optical conductivity to a silicon nitride photonic microresonator, thus modulating its second-and higher-order chromatic dispersions by altering the Fermi level. Preserving cavity quality factors up to 10(6) in the graphene-based comb, we implement a dual-layer ion gel-gated transistor to tune the Fermi level of graphene across the range 0.45-0.65 electronvolts, under single-volt-level control. We use this to produce charge-tunable primary comb lines from 2.3 terahertz to 7.2 terahertz, coherent Kerr frequency combs, controllable Cherenkov radiation and controllable soliton states, all in a single microcavity. We further demonstrate voltage-tunable transitions from periodic soliton crystals to crystals with defects, mapped by our ultrafast second-harmonic optical autocorrelation. This heterogeneous graphene microcavity, which combines single atomic-layer nanoscience and ultrafast optoelectronics, will help to improve our understanding of dynamical frequency combs and ultrafast optics.
引用
收藏
页码:410 / +
页数:10
相关论文
共 32 条
  • [1] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [2] Photonic chip-based optical frequency comb using soliton Cherenkov radiation
    Brasch, V.
    Geiselmann, M.
    Herr, T.
    Lihachev, G.
    Pfeiffer, M. H. P.
    Gorodetsky, M. L.
    Kippenberg, T. J.
    [J]. SCIENCE, 2016, 351 (6271) : 357 - 360
  • [3] Gain modulation by graphene plasmons in aperiodic lattice lasers
    Chakraborty, S.
    Marshall, O. P.
    Folland, T. G.
    Kim, Y. -J.
    Grigorenko, A. N.
    Novoselov, K. S.
    [J]. SCIENCE, 2016, 351 (6270) : 246 - 248
  • [4] Direct frequency comb spectroscopy in the extreme ultraviolet
    Cingoez, Arman
    Yost, Dylan C.
    Allison, Thomas K.
    Ruehl, Axel
    Fermann, Martin E.
    Hartl, Ingmar
    Ye, Jun
    [J]. NATURE, 2012, 482 (7383) : 68 - 71
  • [5] Soliton crystals in Kerr resonators
    Cole, Daniel C.
    Lamb, Erin S.
    Del'Haye, Pascal
    Diddams, Scott A.
    Papp, Scott B.
    [J]. NATURE PHOTONICS, 2017, 11 (10) : 671 - +
  • [6] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [7] Optical frequency comb generation from a monolithic microresonator
    Del'Haye, P.
    Schliesser, A.
    Arcizet, O.
    Wilken, T.
    Holzwarth, R.
    Kippenberg, T. J.
    [J]. NATURE, 2007, 450 (7173) : 1214 - 1217
  • [8] Del'Haye P, 2016, NAT PHOTONICS, V10, P516, DOI [10.1038/NPHOTON.2016.105, 10.1038/nphoton.2016.105]
  • [9] Grigorenko AN, 2012, NAT PHOTONICS, V6, P749, DOI [10.1038/nphoton.2012.262, 10.1038/NPHOTON.2012.262]
  • [10] Regenerative oscillation and four-wave mixing in graphene optoelectronics
    Gu, T.
    Petrone, N.
    McMillan, J. F.
    van der Zande, A.
    Yu, M.
    Lo, G. Q.
    Kwong, D. L.
    Hone, J.
    Wong, C. W.
    [J]. NATURE PHOTONICS, 2012, 6 (08) : 554 - 559