Improved Multi-Objective Particle Swarm Optimization Algorithm for DNA Sequence Design

被引:3
|
作者
Niu, Ying [1 ]
Zhou, Hangyu [2 ]
Wang, Shida [2 ]
Zhao, Kai [2 ]
Wang, Xiaoxiao [2 ]
Zhang, Xuncai [2 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Architecture Environm Engn, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Elect & Informat Engn, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA Sequence Design; IMOPSO; Chaotic Map; Evolutionary Algorithm; CHAOS OPTIMIZATION; DISTANCE;
D O I
10.1166/jno.2020.2882
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The DNA sequence design is a vital step in reducing undesirable biochemical reactions and incorrect computations in successful DNA computing. To this end, many studies had concentrated on how to design higher quality DNA sequences. However, DNA sequences involve some thermodynamic and conflicting conditions, which in turn reflect the evolutionary algorithm process implemented through chemical reactions. In the present study, we applied an improved multi-objective particle swarm optimization (IMOPSO) algorithm to DNA sequence design, in which a chaotic map is combined with this algorithm to avoid falling into local optima. The experimental simulation and statistical results showed that the DNA sequence design method based on IMOPSO has higher reliability than the existing sequence design methods such as traditional evolutionary algorithm, invasive weed algorithm, and specialized methods.
引用
收藏
页码:1450 / 1459
页数:10
相关论文
共 50 条
  • [1] Improved multi-objective particle swarm optimization algorithm
    College of Automation, Northwestern Polytechnical University, Xi'an 710129, China
    不详
    Liu, B. (lbn1987113@163.com), 2013, Beijing University of Aeronautics and Astronautics (BUAA) (39):
  • [2] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [3] An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm
    Zhou, Zuan
    Dai, Guangming
    Fang, Pan
    Chen, Fangjie
    Tan, Yi
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 181 - 188
  • [4] IMOPSO: An Improved Multi-objective Particle Swarm Optimization Algorithm
    Ma, Borong
    Hua, Jun
    Ma, Zhixin
    Li, Xianbo
    PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2016, : 376 - 380
  • [5] Application and optimization design of improved multi-objective particle swarm
    Zhang, Lan-Yong
    Liu, Sheng
    Yu, Da-Yong
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2011, 26 (04): : 789 - 795
  • [6] An Improved Multi-objective Particle Swarm Optimization
    Xu, Shengbing
    Ouyang, Zhiping
    Feng, Jiqiang
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2020), 2020, : 19 - 23
  • [7] An Improved Multi-Objective Particle Swarm Optimization
    Yang, Xixiang
    Zhang, Weihua
    ADVANCED SCIENCE LETTERS, 2011, 4 (4-5) : 1491 - 1495
  • [8] An improved multi-objective cultural algorithm based on particle swarm optimization
    Wu, Ya-Li
    Xu, Li-Qing
    Kongzhi yu Juece/Control and Decision, 2012, 27 (08): : 1127 - 1132
  • [9] Improved multi-objective clustering algorithm using particle swarm optimization
    Gong, Congcong
    Chen, Haisong
    He, Weixiong
    Zhang, Zhanliang
    PLOS ONE, 2017, 12 (12):
  • [10] Optimization Design of Blades Based on Multi-Objective Particle Swarm Optimization Algorithm
    Li, Zihao
    Wang, Wei
    Xie, Yonghe
    Li, Detang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (03)