SnTe as a BSF enhances the performance of Sb2Se3 based solar cell: A numerical approach

被引:13
作者
Kumari, Raman [1 ,2 ]
Kumar, Rahul [1 ,2 ]
Singh, V. N. [1 ,2 ]
Singh, V. N. [1 ,2 ]
机构
[1] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[2] CSIR Natl Phys Lab, Indian Reference Mat BND Div, Dr K S Krishnan Marg, New Delhi 110012, India
关键词
Sb2Se3; BSF; SnTe; Solar cell; SCAPS-1D; EFFICIENCY; DEFECTS;
D O I
10.1016/j.heliyon.2022.e12043
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This theoretical investigation's primary goal is to investigate how the Sb2Se3 solar cell's performance may be improved. Here, SnTe, as an innovative back surface field (BSF) layer, has been added between the rear contact (Mo) and absorber layer (Sb2Se3). Above the absorber layer, the structure comprises a thin CdS buffer layer. For each layer of the Al/CdS/Sb2Se3/SnTe/Mo structure, the physical characteristics such as the active layer's thicknesses, carrier concentration, defect density, and rear electrode's work function are determined. The sug-gested cell outperformed the solar cell without the SnTe layer, which had an efficiency of 20.33%, with enhanced efficiency and open-circuit voltage (Voc) of 28.25% and 0.86 V, respectively, at 300 K. The above solar cell used 0.15 mu m SnTe layer, 0.05 mu m CdS, and 2.0 mu m Sb2Se3 layer. The features of the antimony selenide (Sb2Se3) based solar structure is examined using the SCAPS-1D software, which simulates solar cells in one dimension. In-vestigations have also been done into how working temperatures influence the I-V parameters of the structure.
引用
收藏
页数:7
相关论文
共 22 条
[11]   Sb2Se3 versus Sb2S3 solar cell: A numerical simulation [J].
Mamta ;
Maurya, K. K. ;
Singh, V. N. .
SOLAR ENERGY, 2021, 228 :540-549
[12]   A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells [J].
Mavlonov, Abdurashid ;
Razykov, Takhir ;
Raziq, Fazal ;
Gan, Jiantuo ;
Chantana, Jakapan ;
Kawano, Yu ;
Nishimura, Takahito ;
Wei, Haoming ;
Zakutayev, Andriy ;
Minemoto, Takashi ;
Zu, Xiaotao ;
Li, Sean ;
Qiao, Liang .
SOLAR ENERGY, 2020, 201 :227-246
[13]   Antimony Selenide Absorber Thin Films in All-Chemically Deposited Solar Cells [J].
Messina, Sarah ;
Nair, M. T. S. ;
Nair, P. K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (05) :H327-H332
[14]   Thin film CdS/CdTe solar cells: Research perspectives [J].
Morales-Acevedo, Arturo .
SOLAR ENERGY, 2006, 80 (06) :675-681
[15]  
Noman MAA, 2019, CHALCOGENIDE LETT, V16, P185
[16]   Improve the performance of CZTSSe solar cells by applying a SnS BSF layer [J].
Omrani, Mir Kazem ;
Minbashi, Mehran ;
Memarian, Nafiseh ;
Kim, Dae-Hwan .
SOLID-STATE ELECTRONICS, 2018, 141 :50-57
[17]   The electronic structure of chalcopyrites-bands, point defects and grain boundaries [J].
Siebentritt, Susanne ;
Igalson, Malgorzata ;
Persson, Clas ;
Lany, Stephan .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (06) :390-410
[18]   Numerical Simulation and Performance Evaluation of Highly Efficient Sb2Se3 Solar Cell with Tin Sulfide as Hole Transport Layer [J].
Sunny, Adil ;
Al Ahmed, Sheikh Rashel .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2021, 258 (07)
[19]   Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film [J].
Tang, Rong ;
Zheng, Zhuang-Hao ;
Su, Zheng-Hua ;
Li, Xue-Jin ;
Wei, Ya-Dong ;
Zhang, Xiang-Hua ;
Fu, Yong-Qing ;
Luo, Jing-Ting ;
Fan, Ping ;
Liang, Guang-Xing .
NANO ENERGY, 2019, 64
[20]   Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer [J].
Wang, Liang ;
Li, Deng-Bing ;
Li, Kanghua ;
Chen, Chao ;
Deng, Hui-Xiong ;
Gao, Liang ;
Zhao, Yang ;
Jiang, Fan ;
Li, Luying ;
Huang, Feng ;
He, Yisu ;
Song, Haisheng ;
Niu, Guangda ;
Tang, Jiang .
NATURE ENERGY, 2017, 2 (04)