SnTe as a BSF enhances the performance of Sb2Se3 based solar cell: A numerical approach

被引:13
作者
Kumari, Raman [1 ,2 ]
Kumar, Rahul [1 ,2 ]
Singh, V. N. [1 ,2 ]
Singh, V. N. [1 ,2 ]
机构
[1] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[2] CSIR Natl Phys Lab, Indian Reference Mat BND Div, Dr K S Krishnan Marg, New Delhi 110012, India
关键词
Sb2Se3; BSF; SnTe; Solar cell; SCAPS-1D; EFFICIENCY; DEFECTS;
D O I
10.1016/j.heliyon.2022.e12043
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This theoretical investigation's primary goal is to investigate how the Sb2Se3 solar cell's performance may be improved. Here, SnTe, as an innovative back surface field (BSF) layer, has been added between the rear contact (Mo) and absorber layer (Sb2Se3). Above the absorber layer, the structure comprises a thin CdS buffer layer. For each layer of the Al/CdS/Sb2Se3/SnTe/Mo structure, the physical characteristics such as the active layer's thicknesses, carrier concentration, defect density, and rear electrode's work function are determined. The sug-gested cell outperformed the solar cell without the SnTe layer, which had an efficiency of 20.33%, with enhanced efficiency and open-circuit voltage (Voc) of 28.25% and 0.86 V, respectively, at 300 K. The above solar cell used 0.15 mu m SnTe layer, 0.05 mu m CdS, and 2.0 mu m Sb2Se3 layer. The features of the antimony selenide (Sb2Se3) based solar structure is examined using the SCAPS-1D software, which simulates solar cells in one dimension. In-vestigations have also been done into how working temperatures influence the I-V parameters of the structure.
引用
收藏
页数:7
相关论文
共 22 条
[1]  
Benami A., 2019, J. Energy Power Eng, DOI [10.17265/1934-8975/2019.01.003, DOI 10.17265/1934-8975/2019.01.003]
[2]   Modeling thin-film PV devices [J].
Burgelman, M ;
Verschraegen, J ;
Degrave, S ;
Nollet, P .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3) :143-153
[3]   Efficiency Improvement of Sb2Se3 Solar Cells via Grain Boundary Inversion [J].
Chen, Chao ;
Li, Kanghua ;
Chen, Shiyou ;
Wang, Liang ;
Lu, Shuaicheng ;
Liu, Yuhao ;
Li, Dengbing ;
Song, Haisheng ;
Tang, Jiang .
ACS ENERGY LETTERS, 2018, 3 (10) :2335-2341
[4]   Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics [J].
Chen C. ;
Bobela D.C. ;
Yang Y. ;
Lu S. ;
Zeng K. ;
Ge C. ;
Yang B. ;
Gao L. ;
Zhao Y. ;
Beard M.C. ;
Tang J. .
Frontiers of Optoelectronics, 2017, 10 (01) :18-30
[5]  
Dey M, 2015, 2015 18TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), P573, DOI 10.1109/ICCITechn.2015.7488136
[6]   Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer [J].
Guo, Liping ;
Vijayaraghavan, S. N. ;
Duan, Xiaomeng ;
Menon, Harigovind G. ;
Wall, Jacob ;
Kong, Lingyan ;
Gupta, Subhadra ;
Li, Lin ;
Yan, Feng .
SOLAR ENERGY, 2021, 218 :525-531
[7]   Investigation of electrically-active defects in Sb2Se3 thin-film solar cells with up to 5.91% efficiency via admittance spectroscopy [J].
Hu, Xiaobo ;
Tao, Jiahua ;
Weng, Guoen ;
Jiang, Jinchun ;
Chen, Shaoqiang ;
Zhu, Ziqiang ;
Chu, Junhao .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 186 :324-329
[8]   Combating open circuit voltage loss in Sb2Se3 solar cell with an application of SnS as a back surface field layer [J].
Karade, Vijay C. ;
Jang, Jun Sung ;
Kumbhar, Dhananjay ;
Rao, Manusha ;
Pawar, Pravin S. ;
Kim, Sugil ;
Gour, Kuldeep Singh ;
Park, Jongsung ;
Heo, Jaeyeong ;
Dongale, Tukaram D. ;
Kim, Jin Hyeok .
SOLAR ENERGY, 2022, 233 (435-445) :435-445
[9]   Design of a high efficiency ultrathin CdS/CdTe solar cell using back surface field and backside distributed Bragg reflector [J].
Khosroabadi, Saeed ;
Keshmiri, Seyyed Hossein .
OPTICS EXPRESS, 2014, 22 (09) :A921-A929
[10]   Simulation of the Sb2Se3 solar cell with a hole transport layer [J].
Li, Zhen-Qi ;
Ni, Ming ;
Feng, Xiao-Dong .
MATERIALS RESEARCH EXPRESS, 2020, 7 (01)