Sonic hedgehog induces the segregation of patched and smoothened in endosomes

被引:150
作者
Incardona, JP
Gruenberg, J
Roelink, H [1 ]
机构
[1] Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA
[2] Univ Washington, Ctr Dev Biol, Seattle, WA 98195 USA
[3] Univ Geneva, Dept Biochem Sci 2, CH-1211 Geneva, Switzerland
关键词
D O I
10.1016/S0960-9822(02)00895-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Sonic hedgehog (Shh) signal transduction involves the ligand binding Patched1 (Ptc1) protein and a signaling component, Smoothened (Smo). A select group of compounds inhibits both Shh signaling, regulated by Ptc1, and late endosomal lipid sorting, regulated by the Ptc-related Niemann-Pick C1 (NPC1) protein. This suggests that Ptc1 regulates Smo activity through a common late endosomal sorting pathway also utilized by NPC1. During signaling, Ptc accumulates in endosomal compartments, but it is unclear if Smo follows Ptc into the endocytic pathway. Results: We characterized the dynamic subcellular distributions of Ptc1, Smo, and activated Smo mutants individually and in combination. Ptc1 and Smo colocalize extensively in the absence of ligand and are internalized together after ligand binding, but Smo becomes segregated from Ptc1/Shh complexes destined for lysosomal degradation. In contrast, activated Smo mutants do not colocalize with nor are cotransported with Ptc1. Agents that block late endosomal transport and protein sorting inhibit the ligand-induced segregation of Ptcl and Smo. We show that, like NIPC1-regulated lipid sorting, Shh signal transduction is blocked by antibodies that specifically disrupt the internal membranes of late endosomes, which provide a platform for protein and lipid sorting. Conclusions: These data support a model in which Ptcl inhibits Smo only when in the same compartment. Ligand-induced segregation allows Smo to signal independently of Ptcl after becoming sorted from Ptc1/Shh complexes in the late endocytic pathway.
引用
收藏
页码:983 / 995
页数:13
相关论文
共 51 条
[1]   Posttranscriptional regulation of smoothened is part of a self-correcting mechanism in the hedgehog signaling system [J].
Alcedo, J ;
Zou, Y ;
Noll, M .
MOLECULAR CELL, 2000, 6 (02) :457-465
[2]   Intracellular cholesterol trafficking: role of the NPC1 protein [J].
Blanchette-Mackie, EJ .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2000, 1486 (01) :171-183
[3]   The specification of neuronal identity by graded sonic hedgehog signalling [J].
Briscoe, J ;
Ericson, J .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1999, 10 (03) :353-362
[4]  
CAPDEVILA J, 1994, DEVELOPMENT, V120, P987
[5]   Characterization of two patched receptors for the vertebrate hedgehog protein family [J].
Carpenter, D ;
Stone, DM ;
Brush, J ;
Ryan, A ;
Armanini, M ;
Frantz, G ;
Rosenthal, A ;
de Sauvage, FJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13630-13634
[6]   Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis [J].
Carstea, ED ;
Morris, JA ;
Coleman, KG ;
Loftus, SK ;
Zhang, D ;
Cummings, C ;
Gu, J ;
Rosenfeld, MA ;
Pavan, WJ ;
Krizman, DB ;
Nagle, J ;
Polymeropoulos, MH ;
Sturley, SL ;
Ioannou, YA ;
Higgins, ME ;
Comly, M ;
Cooney, A ;
Brown, A ;
Kaneski, CR ;
BlanchetteMackie, EJ ;
Dwyer, NK ;
Neufeld, EB ;
Chang, TY ;
Liscum, L ;
Strauss, JF ;
Ohno, K ;
Zeigler, M ;
Carmi, R ;
Sokol, J ;
Markie, D ;
ONeill, RR ;
vanDiggelen, OP ;
Elleder, M ;
Patterson, MC ;
Brady, RO ;
Vanier, MT ;
Pentchev, PG ;
Tagle, DA .
SCIENCE, 1997, 277 (5323) :228-231
[7]   PHOSPHORYLATION OF THE POLYMERIC IMMUNOGLOBULIN RECEPTOR REQUIRED FOR ITS EFFICIENT TRANSCYTOSIS [J].
CASANOVA, JE ;
BREITFELD, PP ;
ROSS, SA ;
MOSTOV, KE .
SCIENCE, 1990, 248 (4956) :742-745
[8]   RETRIEVAL OF TGN PROTEINS FROM THE CELL-SURFACE REQUIRES ENDOSOMAL ACIDIFICATION [J].
CHAPMAN, RE ;
MUNRO, S .
EMBO JOURNAL, 1994, 13 (10) :2305-2312
[9]   Dual roles for patched in sequestering and transducing hedgehog [J].
Chen, Y ;
Struhl, G .
CELL, 1996, 87 (03) :553-563
[10]  
CLAGUE MJ, 1994, J BIOL CHEM, V269, P21