Periodic solutions to impulsive differential inclusions with constraints

被引:14
作者
Kryszewski, Wojciech [1 ]
Plaskacz, Slawomir [1 ]
机构
[1] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
periodic solutions; impulsive differential inclusions; Lefschetz fixed point theorem;
D O I
10.1016/j.na.2005.11.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a periodic solution to an impulsive differential inclusion being invariant with respect to a non-convex set of state constraints is established by the use a Lefschetz type fixed-point theorem for set-valued maps. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1794 / 1804
页数:11
相关论文
共 21 条
[1]  
[Anonymous], NONLIN WORLD
[2]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[3]  
Aubin J-P, 1987, APPL NONLINEAR ANAL
[4]   Impulse differential inclusions: A viability approach to hybrid systems [J].
Aubin, JP ;
Lygeros, J ;
Quincampoix, M ;
Sastry, S ;
Seube, N .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (01) :2-20
[5]   On the solution sets of constrained differential inclusions with applications [J].
Bader, R ;
Kryszewski, W .
SET-VALUED ANALYSIS, 2001, 9 (03) :289-313
[6]  
Brown R. F., 1971, LEFSCHETZ FIXED POIN
[7]   Periodic solutions of nonlinear impulsive differential inclusions with constraints [J].
Cardinali, T ;
Servadei, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) :2339-2349
[8]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[9]  
Colombo G, 2001, J CONVEX ANAL, V8, P197
[10]  
CORNET B, 2000, COMM APPL NONLINEAR, V7, P21