Fusion basis for lattice gauge theory and loop quantum gravity

被引:35
作者
Delcamp, Clement [1 ,2 ,3 ]
Dittrich, Bianca [1 ]
Riello, Aldo [1 ]
机构
[1] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[2] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Astron & Guelph Waterloo Phys Inst, Waterloo, ON N2L 3G1, Canada
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2017年 / 02期
关键词
Gauge Symmetry; Models of Quantum Gravity; Topological States of Matter; SPIN NETWORKS; SPACE; VARIABLES; REPRESENTATIONS; QUANTIZATION;
D O I
10.1007/JHEP02(2017)061
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2 + 1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel'd double of the gauge group, and can be readily "fused" together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for GauSS constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2 + 1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
引用
收藏
页数:80
相关论文
共 104 条
[1]   Combinatorial quantization of the Hamiltonian Chern-Simons theory .2. [J].
Alekseev, AY ;
Grosse, H ;
Schomerus, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 174 (03) :561-604
[2]   COMBINATORIAL QUANTIZATION OF THE HAMILTONIAN CHERN-SIMONS THEORY .1. [J].
ALEKSEEV, AY ;
GROSSE, H ;
SCHOMERUS, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (02) :317-358
[3]  
[Anonymous], 1995, Foundations of quantum groups
[4]   How many quanta are there in a quantum spacetime? [J].
Ariwahjoedi, Seramika ;
Kosasih, Jusak Sali ;
Rovelli, Carlo ;
Zen, Freddy P. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (16)
[5]   NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (18) :2244-2247
[6]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[7]   REPRESENTATIONS OF THE HOLONOMY ALGEBRAS OF GRAVITY AND NON-ABELIAN GAUGE-THEORIES [J].
ASHTEKAR, A ;
ISHAM, CJ .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (06) :1433-1467
[8]   PROJECTIVE TECHNIQUES AND FUNCTIONAL-INTEGRATION FOR GAUGE-THEORIES [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2170-2191
[9]  
Ashtekar A., 1994, Knots and Quantum Gravity
[10]  
Bahr B., 2013, J GRAV, V2013