Influence of Electronic Spin and Spin-Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes

被引:127
作者
Graham, Michael J. [1 ]
Zadrozny, Joseph M. [1 ]
Shiddiq, Muhandis [2 ]
Anderson, John S. [1 ]
Fataftah, Majed S. [1 ]
Hill, Stephen [2 ]
Freedman, Danna E. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
MAGNETIC-PROPERTIES; RELAXATION; MANIPULATION;
D O I
10.1021/ja5037397
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Enabling the rational synthesis of molecular candidates for quantum information processing requires design principles that minimize electron spin decoherence. Here we report a systematic investigation of decoherence via the synthesis of two series of paramagnetic coordination complexes. These complexes, [M(C2O4)(3)](3-) (M = Ru, Cr, Fe) and [M(CN)(6)](3-) (M = Fe, Ru, Os), were prepared and interrogated by pulsed electron paramagnetic resonance (EPR) spectroscopy to assess quantitatively the influence of the magnitude of spin (S = 1/2, 3/2, 5/2) and spin orbit coupling (zeta = 464, 880, 3100 cm(-1)) on quantum decoherence. Coherence times (T-2) were collected via Hahn echo experiments and revealed a small dependence on the two variables studied, demonstrating that the magnitudes of spin and spin-orbit coupling are not the primary drivers of electron spin decoherence. On the basis of these conclusions, a proof-of-concept molecule, [Ru(C2O4)(3)](3-), was selected for further study. The two parameters establishing the viability of a qubit are a long coherence time, T-2, and the presence of Rabi oscillations. The complex [Ru(C2O4)(3)](3-) exhibits both a coherence time of T-2 = 3.4 mu s and the rarely observed Rabi oscillations. These two features establish [Ru(C2O4)(3)](3-) as a molecular qubit candidate and mark the viability of coordination complexes as qubit platforms. Our results illustrate that the design of qubit candidates can be achieved with a wide range of paramagnetic ions and spin states while preserving a long-lived coherence.
引用
收藏
页码:7623 / 7626
页数:4
相关论文
共 50 条
[31]   Spin-orbit coupling in elemental two-dimensional materials [J].
Kurpas, Marcin ;
Faria, Paulo E., Jr. ;
Gmitra, Martin ;
Fabian, Jaroslav .
PHYSICAL REVIEW B, 2019, 100 (12)
[32]   Persistent Skyrmion Lattice of Noninteracting Electrons with Spin-Orbit Coupling [J].
Fu, Jiyong ;
Penteado, Poliana H. ;
Hachiya, Marco O. ;
Loss, Daniel ;
Egues, J. Carlos .
PHYSICAL REVIEW LETTERS, 2016, 117 (22)
[33]   Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device [J].
Singh, Madhav K. ;
Jha, Pradeep K. ;
Bhattacherjee, Aranya B. .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (11)
[34]   Solid-State Spin-Photon Quantum Interface without Spin-Orbit Coupling [J].
Claassen, Martin ;
Tuereci, Hakan E. ;
Imamoglu, Atac .
PHYSICAL REVIEW LETTERS, 2010, 104 (17)
[35]   Radial spin helix in two-dimensional electron systems with Rashba spin-orbit coupling [J].
Pershin, Yuriy V. ;
Slipko, Valeriy A. .
PHYSICAL REVIEW B, 2010, 82 (12)
[36]   Spin-orbit coupling and anisotropic exchange in two-electron double quantum dots [J].
Baruffa, Fabio ;
Stano, Peter ;
Fabian, Jaroslav .
PHYSICAL REVIEW B, 2010, 82 (04)
[37]   Interface involved Dresselhaus spin-orbit coupling in GaInAs/AlInAs heterostructures [J].
Yang, Hao ;
Wang, Qingxuan ;
Fu, Jiyong .
PHYSICAL REVIEW B, 2021, 104 (12)
[38]   Spin-Orbit Coupling in 2D Semiconductors: A Theoretical Perspective [J].
Chen, Jiajia ;
Wu, Kai ;
Hu, Wei ;
Yang, Jinlong .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (51) :12256-12268
[39]   Spin-orbit coupling in manganese doped calcium molybdato-tungstates [J].
Gron, T. ;
Pawlikowska, M. ;
Tomaszewicz, E. ;
Oboz, M. ;
Sawicki, B. ;
Duda, H. .
CERAMICS INTERNATIONAL, 2018, 44 (03) :3307-3313
[40]   Controllable transport of nanoparticles along waveguides by spin-orbit coupling of light [J].
Zhang, Zhibin ;
Min, Changjun ;
Fu, Yanan ;
Zhang, Yuquan ;
Liu, Weiwei ;
Yuan, Xiaocong .
OPTICS EXPRESS, 2021, 29 (04) :6282-6292