Development Of Sex-Specific Risk Score Models For Diabetes Among Urban Chinese

被引:0
作者
Yang, Jian [1 ,2 ]
Guo, Qiao [1 ,2 ]
Ye, Jun [1 ]
Zhang, Yongliang [3 ,4 ]
Zheng, Yansong [5 ]
机构
[1] Chinese Acad Sci, Res Ctr Informat Technol Sports & Hlth, Inst Intelligent Machines, Hefei, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Automat, Hefei, Anhui, Peoples R China
[3] Jiangsu Inst Sports Sci, Nanjing, Jiangsu, Peoples R China
[4] Beijing Sport Univ, Beijing, Peoples R China
[5] Chinese Peoples Liberat Army Gen Hosp, Inst Hlth Management, Beijing, Peoples R China
来源
2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI) | 2017年
关键词
Diabetes; Risk-score; Urban Chinese; LIFE-STYLE; MELLITUS; INDIVIDUALS; PREVALENCE; GLUCOSE; ADULTS; DEFINITION; PREDICTION; TOOL;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The present study aimed to derivate and validate score models to predict the risk of diabetes among urban Chinese men and women. Participants included 26,600 men (47.64 +/- 7.86 years) and 9,600 women (47.89 +/- 8.30 years), and were respectively divided into derivation and validation cohorts. Multivariate logistic regression analysis was used to select and weigh variables in the derivation cohorts. The validity of the models was tested by the area under the receiver operating characteristic curve (AUC) in validation cohorts, and compared with the Chinese Diabetes Risk Score (CDRS) and Finnish Diabetes Risk Score (FINDRISC) models. Both male and female mathematical models were established to calculate the diabetes risk-score in urban Chinese. The estimated AUC for the male model was 0.920 (95% CI 0.909-0.930) at a cut-off point of >1871. The performance of the male model was superior to the CDRS and FINDRISC models. The estimated AUC for the female model was 0.924 (95% CI 0.905-0.940) at a cut-off point of >2127. The performance of the female model was superior to the CDRS, but slightly inferior to the FINDRISC. The male and female models could help determine individuals at high risk of diabetes in the urban Chinese population.
引用
收藏
页数:5
相关论文
共 26 条
[1]   A risk score for predicting incident diabetes in the Thai population [J].
Aekplakorn, Wichai ;
Bunnag, Pongamorn ;
Woodward, Mark ;
Sritara, Piyamitr ;
Cheepudomwit, Sayan ;
Yamwong, Sukit ;
Yipintsoi, Tada ;
Rajatanavin, Rajata .
DIABETES CARE, 2006, 29 (08) :1872-1877
[2]  
Amer Diabet Assoc, 2013, DIABETES CARE, V36, pS67, DOI [10.2337/dc13-S067, 10.2337/dc11-S062, 10.2337/dc10-S011, 10.2337/dc10-S062, 10.2337/dc12-s064, 10.2337/dc11-S011, 10.2337/dc12-s011, 10.2337/dc14-S081, 10.2337/dc13-S011]
[3]  
[Anonymous], 2014, China J Diabetes Mellitus, V6, P447
[4]  
[Anonymous], 2005, International Physical Activity Questionnaire
[5]   New risk-scoring system including non-alcoholic fatty liver disease for predicting incident type2 diabetes in East China: Shanghai Baosteel Cohort [J].
Chen, Guang-Yu ;
Cao, Hai-Xia ;
Li, Feng ;
Cai, Xiao-Bo ;
Ao, Qing-Hong ;
Gao, Yan ;
Fan, Jian-Gao .
JOURNAL OF DIABETES INVESTIGATION, 2016, 7 (02) :206-211
[6]   A prediction model for type 2 diabetes risk among Chinese people [J].
Chien, K. ;
Cai, T. ;
Hsu, H. ;
Su, T. ;
Chang, W. ;
Chen, M. ;
Lee, Y. ;
Hu, F. B. .
DIABETOLOGIA, 2009, 52 (03) :443-450
[7]   Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331288 participants [J].
Danaei, Goodarz ;
Fahimi, Saman ;
Lu, Yuan ;
Zhou, Bin ;
Hajifathalian, Kaveh ;
Di Cesare, Mariachiara ;
Lo, Wei-Cheng ;
Reis-Santos, Barbara ;
Cowan, Melanie J. ;
Shaw, Jonathan E. ;
Bentham, James ;
Lin, John K. ;
Bixby, Honor ;
Magliano, Dianna ;
Bovet, Pascal ;
Miranda, J. Jaime ;
Khang, Young-Ho ;
Stevens, Gretchen A. ;
Riley, Leanne M. ;
Ali, Mohammed K. ;
Ezzati, Majid ;
Abdeen, Ziad A. ;
Kadir, Khalid Abdul ;
Abu-Rmeileh, Niveen M. ;
Acosta-Cazares, Benjamin ;
Aekplakorn, Wichai ;
Aguilar-Salinas, Carlos A. ;
Ahmadvand, Alireza ;
Al Nsour, Mohannad ;
Alkerwi, Ala'a ;
Amouyel, Philippe ;
Andersen, Lars Bo ;
Anderssen, Sigmund A. ;
Andrade, Dolores S. ;
Anjana, Ranjit Mohan ;
Aounallah-Skhiri, Hajer ;
Aris, Tahir ;
Arlappa, Nimmathota ;
Arveiler, Dominique ;
Assah, Felix K. ;
Avdicova, Maria ;
Balakrishna, Nagalla ;
Bandosz, Piotr ;
Barbagallo, Carlo M. ;
Barcelo, Alberto ;
Batieha, Anwar M. ;
Baur, Louise A. ;
Ben Romdhane, Habiba ;
Bernabe-Ortiz, Antonio ;
Bhargava, Santosh K. .
LANCET DIABETES & ENDOCRINOLOGY, 2015, 3 (08) :624-637
[8]   A Danish diabetes risk sore for targeted screening -: The Inter99 study [J].
Glümer, C ;
Carstensen, B ;
Sandbæk, A ;
Lauritzen, T ;
Jorgensen, T ;
Borch-Johnsen, K .
DIABETES CARE, 2004, 27 (03) :727-733
[9]   Global estimates of diabetes prevalence for 2013 and projections for 2035 [J].
Guariguata, L. ;
Whiting, D. R. ;
Hambleton, I. ;
Beagley, J. ;
Linnenkamp, U. ;
Shaw, J. E. .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2014, 103 (02) :137-149
[10]   Diabetes Risk Calculator: A simple tool for detecting undiagnosed diabetes and pre-diabetes [J].
Heikes, Kenneth E. ;
Eddy, David M. ;
Arondekar, Bhakti ;
Schlessinger, Leonard .
DIABETES CARE, 2008, 31 (05) :1040-1045