Fractional Electromagnetic Equations Using Fractional Forms

被引:70
作者
Baleanu, Dumitru [1 ,2 ]
Golmankhaneh, Ali Khalili [3 ]
Golmankhaneh, Alireza Khalili [3 ,4 ]
Baleanu, Mihaela Cristina [5 ,6 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Magurele 76900, Romania
[3] Islamic Azad Univ, Dept Phys, Uromia Branch, Uromia, Iran
[4] Univ Poona, Dept Phys, Pune 411007, Maharashtra, India
[5] Univ Bucharest, Fac Phys, Bucharest, Romania
[6] Natl Mihail Sadoveanu High Sch, Bucharest, Romania
关键词
Fractional differential forms; Fractional Caputo derivatives; Fractional Maxwell's equations; Fractional Poynting theorem; Fractional vector potential; HAMILTON FORMALISM; FORMULATION; CALCULUS; DIFFERENTIABILITY; MECHANICS; GRADIENT; SYSTEMS;
D O I
10.1007/s10773-009-0109-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalized physics laws involving fractional derivatives give new models and conceptions that can be used in complex systems having memory effects. Using the fractional differential forms, the classical electromagnetic equations involving the fractional derivatives have been worked out. The fractional conservation law for the electric charge and the wave equations were derived by using this method. In addition, the fractional vector and scalar potentials and the fractional Poynting theorem have been derived.
引用
收藏
页码:3114 / 3123
页数:10
相关论文
共 41 条
  • [1] Fractional variational calculus and the transversality conditions
    Agrawal, O. P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33): : 10375 - 10384
  • [2] Formulation of Euler-Lagrange equations for fractional variational problems
    Agrawal, OP
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) : 368 - 379
  • [3] [Anonymous], 1997, FRACTALS FRACTIONAL
  • [4] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [5] [Anonymous], J FRACTIONAL CALCULU
  • [6] Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives
    Baleanu, D
    Muslih, SI
    [J]. PHYSICA SCRIPTA, 2005, 72 (2-3) : 119 - 121
  • [7] Fractional Hamiltonian analysis of higher order derivatives systems
    Baleanu, Dumitru
    Muslih, Sami I.
    Tas, Kenan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [8] Fractional Hamilton formalism within Caputo's derivative
    Baleanu, Dumitru
    Agrawal, Om. P.
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1087 - 1092
  • [9] The Dual Action of Fractional Multi Time Hamilton Equations
    Baleanu, Dumitru
    Golmankhaneh, Ali Khalili
    Golmankhaneh, Alireza Khalili
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (09) : 2558 - 2569
  • [10] Fractional Nambu Mechanics
    Baleanu, Dumitru
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (04) : 1044 - 1052