Forced MHD turbulence simulations for coronal loop heating
被引:0
作者:
Romeou, Z.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florence, Dept Astron & Space Sci, Largo E Fermi 2, FI-50125 Florence, Italy
Univ Patras, Dept Phys, GR-26500 Patras, GreeceUniv Florence, Dept Astron & Space Sci, Largo E Fermi 2, FI-50125 Florence, Italy
Romeou, Z.
[1
,2
]
Velli, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florence, Dept Astron & Space Sci, Largo E Fermi 2, FI-50125 Florence, ItalyUniv Florence, Dept Astron & Space Sci, Largo E Fermi 2, FI-50125 Florence, Italy
Velli, M.
[1
]
Einaudi, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa Largo B Pontecorvo, Dipartimento Fis, I-56100 Pisa, ItalyUniv Florence, Dept Astron & Space Sci, Largo E Fermi 2, FI-50125 Florence, Italy
Einaudi, G.
[3
]
机构:
[1] Univ Florence, Dept Astron & Space Sci, Largo E Fermi 2, FI-50125 Florence, Italy
[3] Univ Pisa Largo B Pontecorvo, Dipartimento Fis, I-56100 Pisa, Italy
来源:
RECENT ADVANCES IN ASTRONOMY AND ASTROPHYSICS
|
2006年
/
848卷
关键词:
magnetohydrodynamics(MHD);
turbulence;
sun : activity;
sun : corona;
sun : magnetic fields;
D O I:
暂无
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
In this work we revisit the question of whether the assumption of a turbulent photosphere provides an efficient mechanism for the disposition of energy in the solar corona. Through a two-dimensional incompressible MHD spectral code and appropriate analysis we investigate the long time statistical behavior of a two-dimensional cross section of a coronal loop. In particular we study the transition to turbulence from a large scale quasi-stationary coherent forcing analyzing the effects of the finite Reynolds and Lundquist numbers and the role of noise in triggering resistive instabilities and subsequent cascades. Simulations of the average energy dissipation and the spectral and spatial distribution at a given time show the self-organization of the loop at large scales via an inverse MHD cascade. To quantify the nonlinearity of the response in the case of constant time forcing, we derive scaling laws against resistivity of the difference between the numerical solution and the linear approximation as well as of the time it takes the system to reach the peak after exceeding the linear approximation solution. We finally comment on the response of the loop also on the most general case of time dependent random forcing comparing with the first case.