Selective amplification of the chirped attosecond pulses produced from relativistic electron mirrors

被引:0
作者
Tan, Fang [1 ,2 ]
Wang, Shao Yi [2 ]
Zhang, Bo [2 ]
Zhang, Zhi Meng [2 ]
Zhu, Bin [2 ]
Wu, Yu Chi [2 ]
Yu, Ming Hai [2 ]
Yang, Yue [2 ]
Li, Gang [2 ]
Zhang, Tian Kui [2 ]
Yan, Yong Hong [2 ]
Lu, Feng [2 ]
Fan, Wei [2 ]
Zhou, Wei Ming [2 ]
Gu, Yu Qiu [2 ]
机构
[1] Univ Sci & Technol China, Sch Phys Sci, Dept Morden Phys, Hefei 230026, Peoples R China
[2] China Acad Engn Phys, Laser Fus Res Ctr, Sci & Technol Plasma Phys Lab, Mianyang 621900, Sichuan, Peoples R China
关键词
Laser-driven electron acceleration; particle-in-cell method; relativistic electron mirror;
D O I
10.1017/S0263034620000312
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 21 条
[1]  
[Anonymous], 2012, ACTA PAEDIAT, V101, pe465
[2]  
[Anonymous], 2011, RADIOTHER ONCOL, V99, pS305
[3]  
Attwood D., 1999, SOFT XRAYS EXTREME U
[4]   Relativistic mirrors in laser plasmas (analytical methods) [J].
Bulanov, S. V. ;
Esirkepov, T. Zh ;
Kando, M. ;
Koga, J. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[5]   Relativistic mirrors in plasmas. Novel results and perspectives [J].
Bulanov, S. V. ;
Esirkepov, T. Zh ;
Kando, M. ;
Pirozhkov, A. S. ;
Rosanov, N. N. .
PHYSICS-USPEKHI, 2013, 56 (05) :429-464
[6]   Light intensification towards the Schwinger limit [J].
Bulanov, SV ;
Esirkepov, T ;
Tajima, T .
PHYSICAL REVIEW LETTERS, 2003, 91 (08)
[7]   High-power laser-driven source of ultra-short X-ray and gamma-ray pulses [J].
Esirkepov, T. Zh. ;
Bulanov, S. V. ;
Zhidkov, A. G. ;
Pirozhkov, A. S. ;
Kando, M. .
EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (02) :457-463
[8]   Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams [J].
Habs, D. ;
Hegelich, M. ;
Schreiber, J. ;
Gross, M. ;
Henig, A. ;
Kiefer, D. ;
Jung, D. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 93 (2-3) :349-354
[9]   Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet [J].
Kiefer, D. ;
Yeung, M. ;
Dzelzainis, T. ;
Foster, P. S. ;
Rykovanov, S. G. ;
Lewis, C. L. S. ;
Marjoribanks, R. S. ;
Ruhl, H. ;
Habs, D. ;
Schreiber, J. ;
Zepf, M. ;
Dromey, B. .
NATURE COMMUNICATIONS, 2013, 4
[10]   First observation of quasi-monoenergetic electron bunches driven out of ultra-thin diamond-like carbon (DLC) foils [J].
Kiefer, D. ;
Henig, A. ;
Jung, D. ;
Gautier, D. C. ;
Flippo, K. A. ;
Gaillard, S. A. ;
Letzring, S. ;
Johnson, R. P. ;
Shah, R. C. ;
Shimada, T. ;
Fernandez, J. C. ;
Liechtenstein, V. Kh. ;
Schreiber, J. ;
Hegelich, B. M. ;
Habs, D. .
EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (02) :427-432