Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells

被引:21
作者
Jiang, J. H. [1 ,3 ]
Zhou, Y. [1 ,3 ]
Korn, T. [2 ]
Schueller, C. [2 ]
Wu, M. W. [1 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[3] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
electron spin-lattice relaxation; electron-phonon interactions; gallium compounds; III-V semiconductors; impurity states; interstitials; magnetic impurities; manganese; paramagnetism; semiconductor doping; semiconductor quantum wells; semimagnetic semiconductors; EXCHANGE INTERACTION; DYNAMICS; GAAS; SPINTRONICS; 2D;
D O I
10.1103/PhysRevB.79.155201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells is studied via the fully microscopic kinetic spin Bloch equation approach where all the scatterings, such as the electron-impurity, electron-phonon, electron-electron Coulomb, electron-hole Coulomb, electron-hole exchange (the Bir-Aronov-Pikus mechanism) and the s-d exchange scatterings, are explicitly included. The Elliott-Yafet mechanism is also incorporated. From this approach, we study the spin relaxation in both n-type and p-type Ga(Mn)As quantum wells. For n-type Ga(Mn)As quantum wells, where most Mn ions take the interstitial positions, we find that the spin relaxation is always dominated by the D'yakonov-Perel' (DP) mechanism in the metallic region. Interestingly, the Mn concentration dependence of the spin relaxation time is nonmonotonic and exhibits a peak. This is due to the fact that the momentum scattering and the inhomogeneous broadening have different density dependences in the nondegenerate and degenerate regimes. For p-type Ga(Mn)As quantum wells, we find that the Mn concentration dependence of the spin relaxation time is also nonmonotonic and shows a peak. The cause of this behavior is that the s-d exchange scattering (or the Bir-Aronov-Pikus) mechanism dominates the spin relaxation in the high Mn concentration regime at low (or high) temperature, whereas the DP mechanism determines the spin relaxation in the low Mn concentration regime. The Elliott-Yafet mechanism also contributes to the spin relaxation at intermediate temperatures. The spin relaxation time due to the DP mechanism increases with increasing Mn concentration due to motional narrowing, whereas those due to the spin-flip mechanisms decrease with it, which thus leads to the formation of the peak. The temperature, photoexcitation density, and magnetic field dependences of the spin relaxation time in p-type Ga(Mn)As quantum wells are investigated systematically with the underlying physics revealed. Our results are consistent with the recent experimental findings.
引用
收藏
页数:12
相关论文
共 81 条
[1]  
[Anonymous], 2005, QUANTUM THEORY ELECT
[2]   Suppression of electron spin relaxation in Mn-doped GaAs [J].
Astakhov, G. V. ;
Dzhioev, R. I. ;
Kavokin, K. V. ;
Korenev, V. L. ;
Lazarev, M. V. ;
Tkachuk, M. N. ;
Kusrayev, Yu. G. ;
Kiessling, T. ;
Ossau, W. ;
Molenkamp, L. W. .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[3]  
Awschalom DD, 2002, NANOSCI TECHNOL, P147
[4]  
BALKANSKI M, 1981, DILUTED MAGNETIC SEM
[5]  
BIR GL, 1976, ZH EKSP TEOR FIZ, V42, P705
[6]   Optical properties of III-Mn-V ferromagnetic semiconductors [J].
Burch, K. S. ;
Awschalom, D. D. ;
Basov, D. N. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (23) :3207-3228
[7]   OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS [J].
BYCHKOV, YA ;
RASHBA, EI .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (33) :6039-6045
[8]  
BYCHKOV YA, 1984, JETP LETT+, V39, P78
[9]  
CIORGA M, ARXIV08091736
[10]   Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells [J].
Crooker, SA ;
Awschalom, DD ;
Baumberg, JJ ;
Flack, F ;
Samarth, N .
PHYSICAL REVIEW B, 1997, 56 (12) :7574-7588