Voronoi diagram with visual restriction

被引:2
|
作者
Fan, Chenglin [1 ]
Luo, Jun [1 ,2 ]
Wang, Wencheng [3 ]
Zhu, Binhai [4 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Beijing 100864, Peoples R China
[2] Huawei Noahs Ark Lab, Hong Kong, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Inst Software, Beijing 100864, Peoples R China
[4] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
基金
对外科技合作项目(国际科技项目);
关键词
Voronoi diagram; Visual restriction; Computational geometry;
D O I
10.1016/j.tcs.2013.08.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a normal Voronoi diagram, each site is able to see all the points in the plane. In this paper, we study the case such that each site is only able to see a visually restricted region in the plane and construct the so-called Visual Restriction Voronoi Diagram (VRVD). We show that the visual restriction Voronoi cell of each site is not necessarily convex and it could consist of many disjoint regions. We prove that the combinatorial complexity of the VRVD on n sites is Theta(n(2)), and then show that the VRVD can be constructed in O(n(2)) time and O(n(2)) space. Besides that, we also give another algorithm with an extra log n factor of running time to compute VRVD, which is easy to implement in practice. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 39
页数:9
相关论文
共 50 条
  • [1] Uncertain Voronoi diagram
    Jooyandeh, Mohammadreza
    Mohades, Ali
    Mirzakhah, Maryam
    INFORMATION PROCESSING LETTERS, 2009, 109 (13) : 709 - 712
  • [2] The Voronoi Diagram of Three Lines
    Hazel Everett
    Daniel Lazard
    Sylvain Lazard
    Mohab Safey El Din
    Discrete & Computational Geometry, 2009, 42 : 94 - 130
  • [3] The Voronoi Diagram of Three Lines
    Everett, Hazel
    Lazard, Daniel
    Lazard, Sylvain
    El Din, Mohab Safey
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (01) : 94 - 130
  • [4] A lower bound on Voronoi diagram complexity
    Aronov, B
    INFORMATION PROCESSING LETTERS, 2002, 83 (04) : 183 - 185
  • [5] Robustness of κ-gon Voronoi diagram construction
    Chen, ZM
    Papadopoulou, E
    Xu, JH
    INFORMATION PROCESSING LETTERS, 2006, 97 (04) : 138 - 145
  • [6] Rounding Voronoi diagram
    Devillers, O
    Gandoin, PM
    THEORETICAL COMPUTER SCIENCE, 2002, 283 (01) : 203 - 221
  • [7] Rounding Voronoi diagram
    Devillers, O
    Gandoin, PM
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 1999, 1568 : 375 - 387
  • [8] Fuzzy Voronoi Diagram
    Jooyandeh, Mohammadreza
    Khorasani, Ali Mohades
    ADVANCES IN COMPUTER SCIENCE AND ENGINEERING, 2008, 6 : 82 - 89
  • [9] An efficient algorithm for construction of the power diagram from the Voronoi diagram in the plane
    Gavrilova, M
    Rokne, J
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1996, 61 (1-2) : 49 - 61
  • [10] The embracing Voronoi diagram and closest embracing number
    Abellanas M.
    Hernández G.
    Bajuelos A.L.
    Matos I.
    Palop B.
    Journal of Mathematical Sciences, 2009, 161 (6) : 909 - 918