ON A CLASS OF GENERALIZED RECURRENT (k, μ)-CONTACT METRIC MANIFOLDS

被引:1
作者
Khatri, Mohan [1 ]
Singh, Jay Prakash [1 ]
机构
[1] Mizoram Univ, Dept Math & Comp Sci, Aizawl 796004, India
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2020年 / 35卷 / 04期
关键词
(k; mu)-contact metric manifold; hyper generalized phi-recurrent manifold; quasi generalized phi-recurrent manifold; eta-Einstein manifold;
D O I
10.4134/CKMS.c200128
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is the introduction of hyper generalized phi-recurrent (k, mu)-contact metric manifolds and of quasi generalized phi-recurrent (k, mu)-contact metric manifolds, and the investigation of their properties. Their existence is guaranteed by examples.
引用
收藏
页码:1283 / 1297
页数:15
相关论文
共 27 条
[1]  
Baishya K. K., 2007, LOBACHEVSKII J MATH, V27, P3
[2]   ON GENERALIZED QUASI-CONFORMAL N (k, mu)-MANIFOLDS [J].
Baishya, Kanak Kanti ;
Chowdhury, Partha Roy .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (01) :163-176
[3]   CONTACT METRIC MANIFOLDS SATISFYING A NULLITY CONDITION [J].
BLAIR, DE ;
KOUFOGIORGOS, T .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 91 (1-3) :189-214
[4]  
Blair DE, 1976, Lecture Notes in Mathematics, V509
[5]   A full classification of contact metric (k, μ)-spaces [J].
Boeckx, E .
ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (01) :212-219
[6]  
Cartan E., 1926, Bull. Soc. Math. France, V54, P214, DOI DOI 10.24033/BSMF.1105
[7]  
De U. C., 1995, Tensor (N.S.), V56, P312
[8]  
De U.C., 2003, Novi Sad J. Math., V33, P43
[9]   CERTAIN SEMISYMMETRY PROPERTIES OF(κ, μ)-CONTACT METRIC MANIFOLDS [J].
De, Uday Chand ;
Jun, Jae-Bok ;
Samui, Srimayee .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) :1237-1247
[10]   Riemann soliton within the framework of contact geometry [J].
Devaraja, M. N. ;
Aruna Kumara, H. ;
Venkatesha, V. .
QUAESTIONES MATHEMATICAE, 2021, 44 (05) :637-651