LI-YORKE CHAOS FOR DENDRITE MAPS WITH ZERO TOPOLOGICAL ENTROPY AND ω-LIMIT SETS

被引:8
作者
Askri, Ghassen [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dept Math, Jarzouna 7021, Tunisia
关键词
Dendrite; dendrite map; omega-limit set; periodic points; Li-Yorke pair; Li-Yorke chaos; END-POINTS;
D O I
10.3934/dcds.2017127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a dendrite with set of endpoints E(X) closed and let f : X -> X be a continuous map with zero topological entropy. Let P( f) be the set of periodic points off and let L be an omega-limit set of f. We prove that if L is infinite then L boolean AND P(f) subset of E(X)', where E(X)' is the set of all accumulations points of E(X). Furthermore, if E(X) is countable and L is uncountable then L boolean AND P(f) = phi. We also show that if E(X)' is finite and L is uncountable then there is a sequence of subdendrites (D-k)k >= 1 of X and a sequence of integers n(k) >= 2 satisfying the following properties. For all k >= 1, 1. f(alpha k) (Dk) = Dk where alpha(k) = n(1)n(2) . . . n(k), 2. U-k(n)j (-1)(=0) f(k alpha j) 1 (D-j) subset of Dj-1 for all j >= 2, 3. L subset of boolean OR(alpha k-1) f(i)(Dk), 4. f(L boolean AND f(i)(Dk)) L boolean AND) f(i+1)(Dk) for any 0 <= i <= ak 1. In particular, L boolean AND fi(Dk) 0, 5. f (Dk) boolean AND f (Dk) has empty interior for any 0 <= i j <= alpha k, . As a consequence, if f has a Li-Yorke pair (x, y) with wf(x) or wf (y) uncountable then f is Li-Yorke chaotic.
引用
收藏
页码:2957 / 2976
页数:20
相关论文
共 32 条
[1]  
Acosta G, 2007, HOUSTON J MATH, V33, P753
[2]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[3]   NO DIVISION AND THE SET OF PERIODS FOR TREE MAPS [J].
ALSEDA, L ;
YE, XD .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :221-237
[4]   Entropy and periodic points for transitive maps [J].
Alseda, LL ;
Kolyada, S ;
Llibre, J ;
Snoha, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (04) :1551-1573
[5]   Dendrites with a closed set of end points [J].
Arévalo, D ;
Charatonik, WJ ;
Covarrubias, PP ;
Simón, L .
TOPOLOGY AND ITS APPLICATIONS, 2001, 115 (01) :1-17
[6]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[7]  
BLOCK LS, 1992, LECT NOTES MATH, V1513, pUR3
[8]  
Blokh A.M., 1986, J SOVIET MATH, V46, p[8, 500]
[9]  
Blokh A. M., 1990, TEOR FUNKTSIIFUNKTSI, V47, P668
[10]  
Blokh A.M, 1990, J. Soviet Math., V49, P875