Quantum private comparison based on quantum dense coding

被引:16
作者
Wang, Feng [1 ,2 ]
Luo, Mingxing [2 ]
Li, Huiran [2 ]
Qu, Zhiguo [3 ]
Wang, Xiaojun [4 ]
机构
[1] Dezhou Univ, Coll Math Sci, Dezhou 253023, Peoples R China
[2] Southwest Jiaotong Univ, Informat Secur & Natl Comp Grid Lab, Chengdu 610031, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Engn Ctr Network Monitoring, Nanjing 210044, Jiangsu, Peoples R China
[4] Dublin City Univ, Sch Elect Engn, Dublin 9, Ireland
基金
爱尔兰科学基金会; 中国国家自然科学基金;
关键词
private comparison; multiparty secure computation; classical semi-honesty center; quantum dense coding; general EPR pair; ENTANGLED STATES; KEY DISTRIBUTION; SINGLE PHOTONS; W STATE; SECRET; PROTOCOL; COMMUNICATION; TELEPORTATION; CRYPTANALYSIS; STEGANOGRAPHY;
D O I
10.1007/s11432-015-0616-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A serious problem in cloud computing is privacy information protection. This study proposes a new private comparison protocol using Einstein-Podolsky-Rosen (EPR) pairs. This protocol allows two parties to secretly compare their classical information. Quantum dense coding enables the comparison task to be completed with the help of a classical semi-honest center. A one-step transmission scheme and designed decoy photons can be used against various quantum attacks. The new protocol can ensure fairness, efficiency, and security. The classical semi-honest center cannot learn any information about the private inputs of the players. Moreover, this scheme can be easily generalized using the general EPR pairs in order to improve the transmission efficiency.
引用
收藏
页数:13
相关论文
共 74 条
[11]   An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement [J].
Chen, Xiu-Bo ;
Xu, Gang ;
Niu, Xin-Xin ;
Wen, Qiao-Yan ;
Yang, Yi-Xian .
OPTICS COMMUNICATIONS, 2010, 283 (07) :1561-1565
[12]  
Chrzanowski HM, 2014, NAT PHOTONICS, V8, P333, DOI [10.1038/nphoton.2014.49, 10.1038/NPHOTON.2014.49]
[13]   How to share a quantum secret [J].
Cleve, R ;
Gottesman, D ;
Lo, HK .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :648-651
[14]   Improving the security of multiparty quantum secret sharing against Trojan horse attack (vol 72, art no 044302, 2005) [J].
Deng, FG ;
Li, XH ;
Zhou, HY ;
Zhang, ZJ .
PHYSICAL REVIEW A, 2006, 73 (04)
[15]   Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block [J].
Deng, FG ;
Long, GL ;
Liu, XS .
PHYSICAL REVIEW A, 2003, 68 (04) :6
[16]   Quantum Optical State Comparison Amplifier [J].
Eleftheriadou, Electra ;
Barnett, Stephen M. ;
Jeffers, John .
PHYSICAL REVIEW LETTERS, 2013, 111 (21)
[17]   Achieving Efficient Cloud Search Services: Multi-Keyword Ranked Search over Encrypted Cloud Data Supporting Parallel Computing [J].
Fu, Zhangjie ;
Sun, Xingming ;
Liu, Qi ;
Zhou, Lu ;
Shu, Jiangang .
IEICE TRANSACTIONS ON COMMUNICATIONS, 2015, E98B (01) :190-200
[18]   Unconditional quantum teleportation [J].
Furusawa, A ;
Sorensen, JL ;
Braunstein, SL ;
Fuchs, CA ;
Kimble, HJ ;
Polzik, ES .
SCIENCE, 1998, 282 (5389) :706-709
[19]   Quantum secret sharing without entanglement [J].
Guo, GP ;
Guo, GC .
PHYSICS LETTERS A, 2003, 310 (04) :247-251
[20]   Quantum secret sharing [J].
Hillery, M ;
Buzek, V ;
Berthiaume, A .
PHYSICAL REVIEW A, 1999, 59 (03) :1829-1834