On the shape of decomposable trees

被引:9
作者
Barth, Dominique
Fournier, Herve [1 ]
Ravaux, Romain
机构
[1] CNRS, Lab PRiSM, UMR 8144, F-78035 Versailles, France
关键词
Tree partitions; Arbitrarily partitionable trees; Homeomorphism class; Integer partitions; ALGORITHM; GRAPHS;
D O I
10.1016/j.disc.2008.11.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A n-vertex graph is said to be decomposable if, for any partition (lambda(1),..., lambda(p)) of the integer n, there exists a sequence (V-1,..., V-p) of connected vertex-disjoint subgraphs with vertical bar V-i vertical bar = lambda(i). The aim of the paper is to study the homeomorphism classes of decomposable trees. More precisely, we show that homeomorphism classes containing decomposable trees with an arbitrarily large minimal distance between all pairs of distinct vertices of degree different from 2, is exactly the set of combs. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3882 / 3887
页数:6
相关论文
共 13 条
[1]  
[Anonymous], MONOGRAPHS COMPUTER
[2]  
[Anonymous], PARAMETERIZED COMPLE
[3]   A degree bound on decomposable trees [J].
Barth, D ;
Fournier, H .
DISCRETE MATHEMATICS, 2006, 306 (05) :469-477
[4]   Decomposable trees: a polynomial algorithm for tripodes [J].
Barth, D ;
Baudon, O ;
Puech, J .
DISCRETE APPLIED MATHEMATICS, 2002, 119 (03) :205-216
[5]  
BARTH D, 1998, 1164 LRI U PAR SUD
[6]   Plane triangulations are 6-partitionable [J].
Diwan, AA ;
Kurhekar, MP .
DISCRETE MATHEMATICS, 2002, 256 (1-2) :91-103
[7]  
GYORI E, 1978, COMBINATORICA, V1, P485
[8]  
HORNAK M., 2003, OPUSCULA MATH, P49
[9]   On-line arbitrarily vertex decomposable trees [J].
Hornak, Mirko ;
Tuza, Zsolt ;
Wozniak, Mariusz .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (11) :1420-1429
[10]   HOMOLOGY THEORY FOR SPANNING TREES OF A GRAPH [J].
LOVASZ, L .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 30 (3-4) :241-251