Kontsevich product and gauge invariance

被引:12
|
作者
Das, A [1 ]
Frenkel, J
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
PHYSICAL REVIEW D | 2004年 / 69卷 / 06期
关键词
D O I
10.1103/PhysRevD.69.065017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the question of U-*(1) gauge invariance in a flat noncommutative space where the parameter of noncommutativity, theta(munu)(x), is a local function satisfying the Jacobi identity (and thereby leading to an associative Kontsevich product). We show that in this case both gauge transformations as well as the definitions of covariant derivatives have to be modified so as to have a gauge invariant action. We work out the gauge invariant actions for the matter fields in the fundamental and the adjoint representations up to order theta(2) while we discuss the Gauge invariant Maxwell theory up to order theta. We show that, despite the modifications in the gauge transformations, the covariant derivative, and the field strength, the Seiberg-Witten map continues to hold for this theory. In this theory, translations do not form a subgroup of the gauge transformations (unlike in the case when theta(munu) is a constant) which is reflected in the stress tensor not being conserved..
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On the Kontsevich ★-product associativity mechanism
    Buring R.
    Kiselev A.V.
    Physics of Particles and Nuclei Letters, 2017, 14 (2) : 403 - 407
  • [2] GAUGE-INVARIANCE IN OPERATOR-PRODUCT EXPANSION IN NON-ABELIAN GAUGE THEORY
    LEE, C
    PHYSICAL REVIEW D, 1976, 14 (04) : 1078 - 1099
  • [3] GAUGE-INVARIANCE AND A NONLOCAL GAUGE
    IVANOV, SV
    PHYSICS LETTERS B, 1987, 197 (04) : 539 - 542
  • [4] Gauge invariance through gauge fixing
    Wallace, David
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2024, 108 : 38 - 45
  • [5] Gauge invariance and nonconstant gauge couplings
    Mohammedi, N.
    PHYSICAL REVIEW D, 2011, 84 (04):
  • [6] Noncommutative gauge theories and Kontsevich's formality theorem
    Jurco, B
    Schupp, P
    Wess, J
    NEW DEVELOPMENTS IN FUNDAMENTAL INTERACTION THEORIES, 2001, 589 : 249 - 254
  • [7] Kontsevich Star Product on the Dual of a Lie Algebra
    Giuseppe Dito
    Letters in Mathematical Physics, 1999, 48 : 307 - 322
  • [8] Renormalization and gauge invariance
    't Hooft, Gerard
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2007, (170): : 56 - 71
  • [9] A generalization of gauge invariance
    Grigore, Dan-Radu
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
  • [10] Multiscale Gauge Invariance
    M. V. Altaisky
    Physics of Particles and Nuclei, 2020, 51 : 521 - 525