An existence result for a class of extended inclusion problems with applications to equilibrium problems

被引:0
作者
Fang, Y. P. [1 ]
Huang, N. J. [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2006年 / 25卷 / 02期
关键词
extended inclusion problem; equilibrium problem; variational inequality; existence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a real reflexive Banach space, K subset of X a nonempty, closed and convex set, and F : K x K -> 2(X) (the family of all the subsets of X) be a multi-valued mapping. In this paper, we consider the following extended inclusion problem: find x* is an element of K such that K subset of F(x*, x*). Under suitable conditions, we establish an existence result for the extended inclusion problem. As applications, we give some existence theorems for equilibrium problems.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1963, TOPOLOGICAL SPACES I
[2]  
Ansari AH, 2000, NONCON OPTIM ITS APP, V38, P17
[3]   The existence of nonlinear inequalities [J].
Ansari, QH ;
Wong, NC ;
Yao, JC .
APPLIED MATHEMATICS LETTERS, 1999, 12 (05) :89-92
[4]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[5]  
Blum E., 1994, MATH STUDENT, V63, P127
[6]   THE GENERALIZED QUASI-VARIATIONAL INEQUALITY PROBLEM [J].
CHAN, D ;
PANG, JS .
MATHEMATICS OF OPERATIONS RESEARCH, 1982, 7 (02) :211-222
[7]  
Chen GY, 2000, NONCON OPTIM ITS APP, V38, P73
[8]   On the semi-monotone operator theory and applications [J].
Chen, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (01) :177-192
[9]   An existence theorem for a class of inclusions [J].
Di Bella, B .
APPLIED MATHEMATICS LETTERS, 2000, 13 (03) :15-19
[10]   Vector equilibrium type problems with (S)+-conditions [J].
Fang, YP ;
Huang, NJ .
OPTIMIZATION, 2004, 53 (03) :269-279