Clinician's guide to trustworthy and responsible artificial intelligence in cardiovascular imaging

被引:14
作者
Szabo, Liliana [1 ,2 ,3 ]
Raisi-Estabragh, Zahra [1 ,2 ]
Salih, Ahmed [1 ,2 ]
McCracken, Celeste [4 ]
Pujadas, Esmeralda Ruiz [5 ]
Gkontra, Polyxeni [5 ]
Kiss, Mate [6 ]
Maurovich-Horvath, Pal [7 ]
Vago, Hajnalka [3 ]
Merkely, Bela [3 ]
Lee, Aaron M. [1 ,2 ]
Lekadir, Karim [5 ]
Petersen, Steffen E. [1 ,2 ,8 ,9 ]
机构
[1] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, London, England
[2] Barts Hlth NHS Trust, Barts Heart Ctr, St Bartholomews Hosp, London, England
[3] Semmelweis Univ, Heart & Vasc Ctr, Budapest, Hungary
[4] Univ Oxford, Oxford Univ Hosp NHS Fdn Trust, Natl Inst Hlth Res Oxford Biomed Res Ctr, Radcliffe Dept Med,Div Cardiovasc Med, Oxford, England
[5] Univ Barcelona, Dept Matemat & Informat, Artificial Intelligence Med Lab BCN AIM, Barcelona, Spain
[6] Siemens Healthcare Hungary, Budapest, Hungary
[7] Semmelweis Univ, Med Imaging Ctr, Dept Radiol, Budapest, Hungary
[8] Hlth Data Res UK, London, England
[9] Alan Turing Inst, London, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
artificial intelligence; cardiovascular imaging; machine learning (ML); trustworthiness; AI risk; HEALTH-CARE INNOVATION; COMPUTED-TOMOGRAPHY; TEXTURE ANALYSIS; BIG DATA; MACHINE; FUTURE; ECHOCARDIOGRAPHY; ACCURACY;
D O I
10.3389/fcvm.2022.1016032
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A growing number of artificial intelligence (AI)-based systems are being proposed and developed in cardiology, driven by the increasing need to deal with the vast amount of clinical and imaging data with the ultimate aim of advancing patient care, diagnosis and prognostication. However, there is a critical gap between the development and clinical deployment of AI tools. A key consideration for implementing AI tools into real-life clinical practice is their "trustworthiness" by end-users. Namely, we must ensure that AI systems can be trusted and adopted by all parties involved, including clinicians and patients. Here we provide a summary of the concepts involved in developing a "trustworthy AI system." We describe the main risks of AI applications and potential mitigation techniques for the wider application of these promising techniques in the context of cardiovascular imaging. Finally, we show why trustworthy AI concepts are important governing forces of AI development.
引用
收藏
页数:14
相关论文
共 133 条
[1]   Non-invasive imaging as the cornerstone of cardiovascular precision medicine [J].
Achenbach, Stephan ;
Fuchs, Friedrich ;
Goncalves, Alexandra ;
Kaiser-Albers, Claudia ;
Ali, Ziad A. ;
Bengel, Frank M. ;
Dimmeler, Stefanie ;
Fayad, Zahi A. ;
Mebazaa, Alexandre ;
Meder, Benjamin ;
Narula, Jagat ;
Shah, Amil ;
Sharma, Sanjay ;
Voigt, Jens-Uwe ;
Plein, Sven .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2022, 23 (04) :465-475
[2]  
AI Central, 2022, ACR DAT SCI I
[3]  
Al'Aref SJ., 2021, MACHINE LEARNING CAR
[4]   Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry [J].
Al'Arefilb, Subhi J. ;
Maliakal, Gabriel ;
Singh, Gurpreet ;
van Rosendael, Alexander R. ;
Ma, Xiaoyue ;
Xu, Zhuoran ;
Alawamlh, Omar Al Hussein ;
Lee, Benjamin ;
Pandey, Mohit ;
Achenbach, Stephan ;
Al-Mallah, Mouaz H. ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Cademartiri, Filippo ;
Canister, Tracy Q. ;
Chang, Hyuk-Jae ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Cury, Ricardo C. ;
DeLago, Augustin ;
Feuchtner, Gudrun ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Kaufmann, Philipp A. ;
Kim, Yong-Jin ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Goncalves, Pedro de Araujo ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Rubinshtein, Ronen ;
Villines, Todd C. ;
Gransar, Heidi ;
Lu, Yao ;
Jones, Erica C. ;
Pena, Jessica M. ;
Lin, Fay Y. ;
Min, James K. ;
Shaw, Leslee J. .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :359-367
[5]  
Ammanath B., 2022, Trustworthy AI: a business guide for navigating trust and ethics in AI
[6]  
[Anonymous], 2021, 2402912021 ISOIEC TR
[7]  
[Anonymous], 2018, Ergonomics of human-system interaction-Part 11: Usability: Definitions and concepts (BS EN ISO 9241-11:2018)
[8]  
[Anonymous], 2021, Standard ISO/IEC TR 24027:2021(E)
[9]   Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes [J].
Antonopoulos, Alexios S. ;
Boutsikou, Maria ;
Simantiris, Spyridon ;
Angelopoulos, Andreas ;
Lazaros, George ;
Panagiotopoulos, Ioannis ;
Oikonomou, Evangelos ;
Kanoupaki, Mikela ;
Tousoulis, Dimitris ;
Mohiaddin, Raad H. ;
Tsioufis, Konstantinos ;
Vlachopoulos, Charalambos .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   On instabilities of deep learning in image reconstruction and the potential costs of AI [J].
Antun, Vegard ;
Renna, Francesco ;
Poon, Clarice ;
Adcock, Ben ;
Hansen, Anders C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) :30088-30095