Sampling properties of the discrete radon transform

被引:7
|
作者
Svalbe, I [1 ]
机构
[1] Monash Univ, Sch Phys & Mat Engn, Ctr Xray Phys & Imaging, Melbourne, Vic 3800, Australia
关键词
discrete image processing; digital projection; discrete geometry;
D O I
10.1016/j.dam.2002.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The discrete radon transform (DRT) forms a set of digital projections of discrete data, similar to the sinograrn of the continuous space radon transform. An advantage of the DRT is that it provides an exact and easily invertible representation for any prime-sized array of arbitrary digital data. The digital projection mechanism is especially suited to the representation and detection of straight lines in digital images. This paper details the angle distribution of the digital projections and characterises the spatial data sampling properties of the DRT digital rays, for regular square and hexagonal lattices. Understanding these properties will aid the design of algorithms to filter and analyse 2D image data that is stored as ID digital projections in projection space. The DRT can also be applied to reconstruct images from real projection data and may provide a physical basis for modelling the properties of real discrete systems. The DRT also generates binary arrays with special translation-invariant properties. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:265 / 281
页数:17
相关论文
共 50 条
  • [1] The discrete periodic radon transform
    Hsung, TC
    Lun, DPK
    Siu, WC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (10) : 2651 - 2657
  • [2] The polynomial discrete Radon transform
    Ines ELouedi
    Régis Fournier
    Amine Naït-Ali
    Atef Hamouda
    Signal, Image and Video Processing, 2015, 9 : 145 - 154
  • [3] DISCRETE RADON-TRANSFORM
    BEYLKIN, G
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (02): : 162 - 172
  • [4] The polynomial discrete Radon transform
    ELouedi, Ines
    Fournier, Regis
    Nait-Ali, Amine
    Hamouda, Atef
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 : 145 - 154
  • [5] Sampling Conditions for the Circular Radon Transform
    Haltmeier, Markus
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (06) : 2910 - 2919
  • [6] Parabolic Radon transform, sampling and efficiency
    Schonewille, MA
    Duijndam, AJW
    GEOPHYSICS, 2001, 66 (02) : 667 - 678
  • [7] Comments on "The Discrete Periodic Radon Transform"
    Grigoryan, Artyom M.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (11) : 5962 - 5963
  • [8] Inversion Formula for the Discrete Radon Transform
    Kawazoe, Takeshi
    TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (01) : 175 - 191
  • [9] On the algorithmic inversion of the discrete Radon transform
    Gritzmann, P
    de Vries, S
    THEORETICAL COMPUTER SCIENCE, 2002, 281 (1-2) : 455 - 469
  • [10] The generalised radon transform: Sampling and memory considerations
    Luengo Hendriks, CL
    van Ginkel, A
    Verbeek, PW
    van Vliet, LJ
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2003, 2756 : 681 - 688