Overflow metabolism in Escherichia coli results from efficient proteome allocation

被引:485
作者
Basan, Markus [1 ,2 ]
Hui, Sheng [1 ]
Okano, Hiroyuki [1 ,3 ]
Zhang, Zhongge [3 ]
Shen, Yang [3 ]
Williamson, James R. [4 ]
Hwa, Terence [1 ,3 ,5 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] ETH, Inst Mol Syst Biol, CH-8093 Zurich, Switzerland
[3] Univ Calif San Diego, Mol Biol Sect, Div Biol Sci, La Jolla, CA 92093 USA
[4] Scripps Res Inst, Dept Chem, Skaggs Inst Chem Biol, Dept Integrat Struct & Computat Biol, La Jolla, CA 92037 USA
[5] ETH, Inst Theoret Studies, CH-8092 Zurich, Switzerland
关键词
GENE-EXPRESSION; ACETATE FORMATION; GROWTH-RATE; FLUX; COORDINATION; TRADEOFFS; MECHANISM; TRANSPORT; REVEALS; CULTURE;
D O I
10.1038/nature15765
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Overflow metabolism refers to the seemingly wasteful strategy in which cells use fermentation instead of the more efficient respiration to generate energy, despite the availability of oxygen. Known as the Warburg effect in the context of cancer growth, this phenomenon occurs ubiquitously for fast-growing cells, including bacteria, fungi and mammalian cells, but its origin has remained unclear despite decades of research. Here we study metabolic overflow in Escherichia coli, and show that it is a global physiological response used to cope with changing proteomic demands of energy biogenesis and biomass synthesis under different growth conditions. A simple model of proteomic resource allocation can quantitatively account for all of the observed behaviours, and accurately predict responses to new perturbations. The key hypothesis of the model, that the proteome cost of energy biogenesis by respiration exceeds that by fermentation, is quantitatively confirmed by direct measurement of protein abundances via quantitative mass spectrometry.
引用
收藏
页码:99 / +
页数:18
相关论文
共 63 条
[1]   Functional and Metabolic Effects of Adaptive Glycerol Kinase (GLPK) Mutants in Escherichia coli [J].
Applebee, M. Kenyon ;
Joyce, Andrew R. ;
Conrad, Tom M. ;
Pettigrew, Donald W. ;
Palsson, Bernhard O. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (26) :23150-23159
[2]   METABOLIC ENGINEERING OF ESCHERICHIA-COLI TO ENHANCE RECOMBINANT PROTEIN-PRODUCTION THROUGH ACETATE REDUCTION [J].
ARISTIDOU, AA ;
SAN, KY ;
BENNETT, GN .
BIOTECHNOLOGY PROGRESS, 1995, 11 (04) :475-478
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[5]   Nonoptimal Microbial Response to Antibiotics Underlies Suppressive Drug Interactions [J].
Bollenbach, Tobias ;
Quan, Selwyn ;
Chait, Remy ;
Kishony, Roy .
CELL, 2009, 139 (04) :707-718
[6]  
BROOKER RJ, 1991, J BIOL CHEM, V266, P4131
[7]   Complete Genome Sequence of Escherichia coli NCM3722 [J].
Brown, Steven D. ;
Jun, Suckjoon .
GENOME ANNOUNCEMENTS, 2015, 3 (04)
[8]   ACCUMULATION OF 3-(N-MORPHOLINO)PROPANESULFONATE BY OSMOTICALLY STRESSED ESCHERICHIA-COLI K-12 [J].
CAYLEY, S ;
RECORD, MT ;
LEWIS, BA .
JOURNAL OF BACTERIOLOGY, 1989, 171 (07) :3597-3602
[9]   Coordination of microbial metabolism [J].
Chubukov, Victor ;
Gerosa, Luca ;
Kochanowski, Karl ;
Sauer, Uwe .
NATURE REVIEWS MICROBIOLOGY, 2014, 12 (05) :327-340
[10]   Minimizing acetate formation in E-coli fermentations [J].
De Mey, Marjan ;
De Maeseneire, Sofie ;
Soetaert, Wim ;
Vandamme, Erick .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2007, 34 (11) :689-700