THE EB FACTORY PROJECT. I. A FAST, NEURAL-NET-BASED, GENERAL PURPOSE LIGHT CURVE CLASSIFIER OPTIMIZED FOR ECLIPSING BINARIES

被引:10
作者
Paegert, Martin [1 ]
Stassun, Keivan G. [1 ,2 ]
Burger, Dan M. [1 ]
机构
[1] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[2] Fisk Univ, Dept Phys, Nashville, TN 37208 USA
关键词
binaries: eclipsing; stars: variables: general; AUTOMATED SUPERVISED CLASSIFICATION; GRAVITATIONAL LENSING EXPERIMENT; VARIABLE-STARS; CATALOG;
D O I
10.1088/0004-6256/148/2/31
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together with a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (similar to 60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.
引用
收藏
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 2009, IAU SYMP P SERIES, DOI DOI 10.1017/S1743921309031810
[2]  
[Anonymous], BAAS
[3]  
[Anonymous], BAAS
[4]   Improved methodology for the automated classification of periodic variable stars [J].
Blomme, J. ;
Sarro, L. M. ;
O'Donovan, F. T. ;
Debosscher, J. ;
Brown, T. ;
Lopez, M. ;
Dubath, P. ;
Rimoldini, L. ;
Charbonneau, D. ;
Dunham, E. ;
Mandushev, G. ;
Ciardi, D. R. ;
De Ridder, J. ;
Aerts, C. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (01) :96-106
[5]   Kepler Planet-Detection Mission: Introduction and First Results [J].
Borucki, William J. ;
Koch, David ;
Basri, Gibor ;
Batalha, Natalie ;
Brown, Timothy ;
Caldwell, Douglas ;
Caldwell, John ;
Christensen-Dalsgaard, Jorgen ;
Cochran, William D. ;
DeVore, Edna ;
Dunham, Edward W. ;
Dupree, Andrea K. ;
Gautier, Thomas N., III ;
Geary, John C. ;
Gilliland, Ronald ;
Gould, Alan ;
Howell, Steve B. ;
Jenkins, Jon M. ;
Kondo, Yoji ;
Latham, David W. ;
Marcy, Geoffrey W. ;
Meibom, Soren ;
Kjeldsen, Hans ;
Lissauer, Jack J. ;
Monet, David G. ;
Morrison, David ;
Sasselov, Dimitar ;
Tarter, Jill ;
Boss, Alan ;
Brownlee, Don ;
Owen, Toby ;
Buzasi, Derek ;
Charbonneau, David ;
Doyle, Laurance ;
Fortney, Jonathan ;
Ford, Eric B. ;
Holman, Matthew J. ;
Seager, Sara ;
Steffen, Jason H. ;
Welsh, William F. ;
Rowe, Jason ;
Anderson, Howard ;
Buchhave, Lars ;
Ciardi, David ;
Walkowicz, Lucianne ;
Sherry, William ;
Horch, Elliott ;
Isaacson, Howard ;
Everett, Mark E. ;
Fischer, Debra .
SCIENCE, 2010, 327 (5968) :977-980
[6]   LOW-MASS ECLIPSING BINARIES IN THE INITIAL KEPLER DATA RELEASE [J].
Coughlin, J. L. ;
Lopez-Morales, M. ;
Harrison, T. E. ;
Ule, N. ;
Hoffman, D. I. .
ASTRONOMICAL JOURNAL, 2011, 141 (03)
[7]   Automated supervised classification of variable stars - I. methodology [J].
Debosscher, J. ;
Sarro, L. M. ;
Aerts, C. ;
Cuypers, J. ;
Vandenbussche, B. ;
Garrido, R. ;
Solano, E. .
ASTRONOMY & ASTROPHYSICS, 2007, 475 (03) :1159-1183
[8]   Automated supervised classification of variable stars in the CoRoT programme Method and application to the first four exoplanet fields [J].
Debosscher, J. ;
Sarro, L. M. ;
Lopez, M. ;
Deleuil, M. ;
Aerts, C. ;
Auvergne, M. ;
Baglin, A. ;
Baudin, F. ;
Chadid, M. ;
Charpinet, S. ;
Cuypers, J. ;
De Ridder, J. ;
Garrido, R. ;
Hubert, A. M. ;
Janot-Pacheco, E. ;
Jorda, L. ;
Kaiser, A. ;
Kallinger, T. ;
Kollath, Z. ;
Maceroni, C. ;
Mathias, P. ;
Michel, E. ;
Moutou, C. ;
Neiner, C. ;
Ollivier, M. ;
Samadi, R. ;
Solano, E. ;
Surace, C. ;
Vandenbussche, B. ;
Weiss, W. W. .
ASTRONOMY & ASTROPHYSICS, 2009, 506 (01) :519-534
[9]   Automated classification of variable stars for All-Sky Automated Survey 1-2 data [J].
Eyer, L ;
Blake, C .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 358 (01) :30-38
[10]   The distance to the Large Magellanic Cloud from the eclipsing binary HV 2274 [J].
Guinan, EF ;
Fitzpatrick, EL ;
DeWarf, LE ;
Maloney, FP ;
Maurone, PA ;
Ribas, I ;
Pritchard, JD ;
Bradstreet, DH ;
Giménez, A .
ASTROPHYSICAL JOURNAL, 1998, 509 (01) :L21-L24