Precise counting results for closed orbits of Anosov flows

被引:33
作者
Anantharaman, N [1 ]
机构
[1] Univ Paris 06, Probabil Lab, CNRS, UMR 7599, F-75252 Paris 05, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2000年 / 33卷 / 01期
关键词
D O I
10.1016/S0012-9593(00)00102-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of counting closed geodesics according to their lengths and under homological constraints on a compact surface of negative curvature. We show how to use Dolgopyat's recent results to obtain a full asymptotic expansion, in addition to the leading term given by Lalley. We first state the properties of the stable and unstable leaves used by Chernov and Dolgopyat; then we introduce the usual transfer operators and we prove the result with the help of a dynamical C-function. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:33 / 56
页数:24
相关论文
共 29 条
[1]  
ADACHI T, 1987, J DIFFER GEOM, V26, P81
[2]  
ANOSOV DV, 1969, P STEKL I MATH, V90
[3]   Lalley's theorem on periodic orbits of hyperbolic flows [J].
Babillot, M ;
Ledrappier, F .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :17-39
[4]   MINIMAL GEODESICS [J].
BANGERT, V .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :263-286
[5]   SYMBOLIC DYNAMICS FOR HYPERBOLIC FLOWS [J].
BOWEN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1973, 95 (02) :429-459
[6]  
CHERNOV NI, IN PRESS ANN MATH
[7]  
Copson E.T., 1965, Asymptotic Expansions
[8]  
DOLGOPYAT D, IN PRESS ANN MATH
[9]   REGULARITY OF THE ANOSOV SPLITTING AND OF HOROSPHERIC FOLIATIONS [J].
HASSELBLATT, B .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 :645-666
[10]  
HORMANDER L, 1983, SERIES COMPREHENSIVE, V256