Spontaneously Forming Dendritic Voids in Liquid Water Can Host Small Polymers

被引:23
作者
Ansari, Narjes [1 ]
Laio, Alessandro [1 ,2 ]
Hassanali, Ali [1 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
关键词
SOLVATION FREE-ENERGIES; MOLECULAR-DYNAMICS; HYDROPHOBICITY; HYDRATION; INTERFACES; CAVITIES; AMBIENT; MODEL;
D O I
10.1021/acs.jpclett.9b02052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Some liquids are characterized by the presence of large voids with dendritic shapes and for this reason are dubbed transiently porous. By using a battery of data analysis tools, we demonstrate that liquid water and methane are both characterized by transient porosity. We show that the thermodynamics of porosity is distinct from that associated with cavitation a la classical nucleation theory. The shapes of dendritic voids in both liquids with very different chemistries resemble those of small polymers. We further show, using free energy calculations, that the cost of solvating small hydrophobic polymers in water is consistent with the work associated with creating dendritic voids. The entropic and enthalpic contributions associated with hosting these polymers can thus be rationalized by the thermodynamics of fluctuations in bulk water.
引用
收藏
页码:5585 / 5591
页数:13
相关论文
共 60 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   THERMODYNAMICS OF SOLUTE TRANSFER FROM WATER TO HEXADECANE [J].
ABRAHAM, MH ;
WHITING, GS ;
FUCHS, R ;
CHAMBERS, EJ .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1990, (02) :291-300
[3]   Morphology of voids in molecular systems. A Voronoi-Delaunay analysis of a simulated DMPC membrane [J].
Alinchenko, MG ;
Anikeenko, AV ;
Medvedev, NN ;
Voloshin, VP ;
Mezei, M ;
Jedlovszky, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (49) :19056-19067
[4]   Insights into phases of liquid water from study of its unusual glass-forming properties [J].
Angell, C. Austen .
SCIENCE, 2008, 319 (5863) :582-587
[5]   High and low density patches in simulated liquid water [J].
Ansari, N. ;
Dandekar, R. ;
Caravati, S. ;
Sosso, G. C. ;
Hassanali, A. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (20)
[6]   Water as an active constituent in cell biology [J].
Ball, Philip .
CHEMICAL REVIEWS, 2008, 108 (01) :74-108
[7]   Machine learning unifies the modeling of materials and molecules [J].
Bartok, Albert P. ;
De, Sandip ;
Poelking, Carl ;
Bernstein, Noam ;
Kermode, James R. ;
Csanyi, Gabor ;
Ceriotti, Michele .
SCIENCE ADVANCES, 2017, 3 (12)
[8]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[9]   Water Determines the Structure and Dynamics of Proteins [J].
Bellissent-Funel, Marie-Claire ;
Hassanali, Ali ;
Havenith, Martina ;
Henchman, Richard ;
Pohl, Peter ;
Sterpone, Fabio ;
van der Spoel, David ;
Xu, Yao ;
Garcia, Angel E. .
CHEMICAL REVIEWS, 2016, 116 (13) :7673-7697
[10]   Water-Mediated Hydrophobic Interactions [J].
Ben-Amotz, Dor .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 67, 2016, 67 :617-+