Microfluidic Technology for Nucleic Acid Aptamer Evolution and Application

被引:24
作者
Fraser, Lewis A. [1 ]
Cheung, Yee-Wai [1 ]
Kinghorn, Andrew B. [1 ]
Guo, Wei [2 ]
Shiu, Simon Chi-Chin [1 ]
Jinata, Chandra [1 ]
Liu, Mengping [1 ]
Bhuyan, Soubhagya [1 ]
Nan, Lang [2 ]
Shum, Ho Cheung [2 ]
Tanner, Julian A. [1 ]
机构
[1] Univ Hong Kong, LKS Fac Med, Sch Biomed Sci, Hong Kong, Peoples R China
[2] Univ Hong Kong, Fac Engn, Dept Mech Engn, Hong Kong, Peoples R China
关键词
aptamers; biosensors; microfluidics; selection; SELEX; CIRCULATING TUMOR-CELLS; IN-VITRO SELECTION; NONEQUILIBRIUM CAPILLARY-ELECTROPHORESIS; VISUAL QUANTITATIVE DETECTION; TARGET-RESPONSIVE HYDROGEL; TETHERED ENZYME CAPTURE; HIGH-THROUGHPUT; CANCER-CELLS; DNA APTAMERS; ELECTROCHEMICAL DETECTION;
D O I
10.1002/adbi.201900012
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The intersection of microfluidics and aptamer technologies holds particular promise for rapid progress in a plethora of applications across biomedical science and other areas. Here, the influence of microfluidics on the field of aptamers, from traditional capillary electrophoresis approaches through innovative modern-day approaches using micromagnetic beads and emulsion droplets, is reviewed. Miniaturizing aptamer-based bioassays through microfluidics has the potential to transform diagnostics and embedded biosensing in the coming years.
引用
收藏
页数:16
相关论文
共 50 条
[21]   Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives [J].
Li, Long ;
Xu, Shujuan ;
Yan, He ;
Li, Xiaowei ;
Yazd, Hoda Safari ;
Li, Xiang ;
Huang, Tong ;
Cui, Cheng ;
Jiang, Jianhui ;
Tan, Weihong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (05) :2221-2231
[22]   A comparative study of aptamer isolation by conventional and microfluidic strategies [J].
Meng, Xin ;
Wen, Kechun ;
Citartan, Marimuthu ;
Lin, Qiao .
ANALYST, 2023, 148 (04) :787-798
[23]   Nucleic Acid Aptamer-Mediated Drug Delivery for Targeted Cancer Therapy [J].
Zhu, Huijie ;
Li, Jin ;
Zhang, Xiao-Bing ;
Ye, Mao ;
Tan, Weihong .
CHEMMEDCHEM, 2015, 10 (01) :39-45
[24]   Detection of Non-Nucleic Acid Targets With an Unmodified Aptamer and a Fluorogenic Competitor [J].
Li, Na .
JALA, 2010, 15 (03) :189-197
[25]   Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer [J].
Musumeci, Domenica ;
Montesarchio, Daniela .
PHARMACOLOGY & THERAPEUTICS, 2012, 136 (02) :202-215
[26]   In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies [J].
Lipi, Farhana ;
Chen, Suxiang ;
Chakravarthy, Madhuri ;
Rakesh, Shilpa ;
Veedu, Rakesh N. .
RNA BIOLOGY, 2016, 13 (12) :1232-1245
[27]   Evolution of Functionally Enhanced α-L-Threofuranosyl Nucleic Acid Aptamers [J].
McCloskey, Cailen M. ;
Li, Qingfeng ;
Yik, Eric J. ;
Chim, Nicholas ;
Ngor, Arlene K. ;
Medina, Esau ;
Grubisic, Ivan ;
Keh, Lance Co Ting ;
Poplin, Ryan ;
Chaput, John C. .
ACS SYNTHETIC BIOLOGY, 2021, 10 (11) :3190-3199
[28]   Integrated nucleic acid purification technology based on amino-modified centrifugal microfluidic chip [J].
Dong, Yongkang ;
Chen, Bailiang ;
Cai, Gangpei ;
Xu, Fei ;
Li, Linzhi ;
Cheng, Xiaoqi ;
Shi, Xiaolu ;
Peng, Bo ;
Mi, Shengli .
BIOTECHNOLOGY JOURNAL, 2024, 19 (02)
[29]   Functional Imaging with Nucleic-Acid-Based Sensors: Technology, Application and Future Healthcare Prospects [J].
Wiraja, Christian ;
Yeo, David C. ;
Lio, Daniel Chin Shiuan ;
Zheng, Mengjia ;
Xu, Chenjie .
CHEMBIOCHEM, 2019, 20 (04) :437-450
[30]   Nucleic acid aptamers in therapeutic anticoagulation - Technology, development and clinical application [J].
Becker, RC ;
Rusconi, C ;
Sullenger, B .
THROMBOSIS AND HAEMOSTASIS, 2005, 93 (06) :1014-1020