The relationship between histone H3 phosphorylation and acetylation throughout the mammalian cell cycle

被引:57
作者
McManus, Kirk J. [1 ]
Hendzel, Michael J. [1 ]
机构
[1] Univ Alberta, Dept Oncol, Cross Canc Inst, Edmonton, AB T6G 1Z2, Canada
关键词
histone H3; acetylation; phosphorylation; cell cycle; chromatin;
D O I
10.1139/O06-086
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During interphase, histone amino-terminal tails play important roles in regulating the extent of DNA compaction. Post-translational modifications of the histone tails are intimately associated with regulating chromatin structure: phosphorylation of histone H3 is associated with proper chromosome condensation and dynamics during mitosis, while multiple H2B, H3, and H4 tail acetylations destabilize the chromatin fiber and are sufficient to decondense chromatin fibers in vitro. In this study, we investigate the spatio-temporal dynamics of specific histone H3 phosphorylations and acetylations to better understand the interplay of these post-translational modifications throughout the cell cycle. Using a panel of antibodies that individually, or in combination, recognize phosphorylated serines 10 and 28 and acetylated lysines 9 and 14, we define a series of changes associated with histone H3 that occur as cells progress through the cell cycle. Our results establish that mitosis appears to be a period of the cell cycle when many modifications are highly dynamic. Furthermore, they suggest that the upstream histone acetyltransferases/deacetylases and kinase/phosphatases are temporally regulated to alter their function globally during specific cell cycle time points.
引用
收藏
页码:640 / 657
页数:18
相关论文
共 51 条
[1]   Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation [J].
Adams, RR ;
Maiato, H ;
Earnshaw, WC ;
Carmena, M .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :865-879
[2]   VISUALIZATION OF G1 CHROMOSOMES - A FOLDED, TWISTED, SUPERCOILED CHROMONEMA MODEL OF INTERPHASE CHROMATID STRUCTURE [J].
BELMONT, AS ;
BRUCE, K .
JOURNAL OF CELL BIOLOGY, 1994, 127 (02) :287-302
[3]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[4]   A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications [J].
Bonaldi, T ;
Imhof, A ;
Regula, JT .
PROTEOMICS, 2004, 4 (05) :1382-1396
[5]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604
[6]   The many HATs of transcription coactivators [J].
Brown, CE ;
Lechner, T ;
Howe, L ;
Workman, JL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (01) :15-19
[7]   Increased Ser-10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts [J].
Chadee, DN ;
Hendzel, MJ ;
Tylipski, CP ;
Allis, CD ;
Bazett-Jones, DP ;
Wright, JA ;
Davie, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (35) :24914-24920
[8]   Mitotic phosphorylation of histone H3: Spatio-temporal regulation by mammalian aurora kinases [J].
Crosio, C ;
Fimia, GM ;
Loury, R ;
Kimura, M ;
Okano, Y ;
Zhou, HY ;
Sen, S ;
Allis, CD ;
Sassone-Corsi, P .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (03) :874-885
[9]  
Davie James R, 2003, Sci STKE, V2003, pPE33
[10]   Chromatin fiber folding: Requirement for the histone H4N-terminal tail [J].
Dorigo, B ;
Schalch, T ;
Bystricky, K ;
Richmond, TJ .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 327 (01) :85-96