Drug delivery to the central nervous system by polymeric nanoparticles: What do we know?

被引:414
作者
Kreuter, Joerg [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Pharmazeut Technol, D-60438 Frankfurt, Germany
关键词
Nanoparticles; Drug delivery; Brain targeting; Brain tumours; Glioblastomas; BLOOD-BRAIN-BARRIER; POLY(BUTYL CYANOACRYLATE) NANOPARTICLES; PEG-PLGA NANOPARTICLES; 80-COATED POLYBUTYLCYANOACRYLATE NANOPARTICLES; ANTI-GLIOBLASTOMA EFFICACY; APOLIPOPROTEIN-A-I; BODY DISTRIBUTION; TARGETED DELIVERY; CHITOSAN NANOPARTICLES; SURFACE MODIFICATION;
D O I
10.1016/j.addr.2013.08.008
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Nanoparticles enable the delivery of a great variety of drugs including anticancer drugs, analgesics, anti-Alzheimer's drugs, cardiovascular drugs, protease inhibitors, and several macromolecules into the brain after intravenous injection of animals. The mechanism of the nanoparticle-mediated drug transport across the BBB appears to be receptor-mediated endocytosis followed by transcytosis into the brain or by drug release within the endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants that lead to the adsorption of specific plasma proteins after injection is necessary for this receptor-mediated uptake. A very critical and important requirement for nanoparticulate brain delivery is that the employed nanoparticles are biocompatible and, moreover, rapidly biodegradable, i.e. over a time frame of a few days. In addition to enabling drug delivery to the brain, nanoparticles, as with doxorubicin, may importantly reduce the drug's toxicity and adverse effects due to an alteration of the body distribution. Because of the possibility to treat severe CNS diseases such as brain tumours and to even transport proteins and other macromolecules across the blood-brain barrier, this technology holds great promise for a non-invasive therapy of these diseases. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2 / 14
页数:13
相关论文
共 151 条
[1]   Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro [J].
Alyaudtin, RN ;
Reichel, A ;
Löbenberg, R ;
Ramge, P ;
Kreuter, J ;
Begley, DJ .
JOURNAL OF DRUG TARGETING, 2001, 9 (03) :209-+
[2]   Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles [J].
Alyautdin, RN ;
Petrov, VE ;
Langer, K ;
Berthold, A ;
Kharkevich, DA ;
Kreuter, J .
PHARMACEUTICAL RESEARCH, 1997, 14 (03) :325-328
[3]   Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study [J].
Alyautdin, RN ;
Tezikov, EB ;
Ramge, P ;
Kharkevich, DA ;
Begley, DJ ;
Kreuter, J .
JOURNAL OF MICROENCAPSULATION, 1998, 15 (01) :67-74
[4]   Body distribution of polysorbate-80 and doxorubicin-loaded [14C]poly(butyl cyanoacrylate) nanoparticles after i.v. administration in rats [J].
Ambruosi, A ;
Yamamoto, H ;
Kreuter, J .
JOURNAL OF DRUG TARGETING, 2005, 13 (10) :535-542
[5]   Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats [J].
Ambruosi, A ;
Khalansky, AS ;
Yamamoto, H ;
Gelperina, SE ;
Begley, DJ ;
Kreuter, J .
JOURNAL OF DRUG TARGETING, 2006, 14 (02) :97-105
[6]   Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model [J].
Ambruosi, Alessandra ;
Gelperina, Svetlana ;
Khalansky, Alexander ;
Tanski, Sandra ;
Theisen, Alf ;
Kreuter, Joerg .
JOURNAL OF MICROENCAPSULATION, 2006, 23 (05) :582-592
[7]  
Andrieux K., 2013, ANNALES PHARMACEUTIQUES FRANCAISES, V71, P225, DOI 10.1016/j.pharma.2013.04.001
[8]   Influence of the surfactant concentration on the body distribution of nanoparticles [J].
Araujo, L ;
Löbenberg, R ;
Kreuter, J .
JOURNAL OF DRUG TARGETING, 1999, 6 (05) :373-385
[9]   Uptake and transport of high-density lipoprotein (HDL) and HDL-associated α-tocopherol by an in vitro blood-brain barrier model [J].
Balazs, Z ;
Panzenboeck, U ;
Hammer, A ;
Sovic, A ;
Quehenberger, O ;
Malle, E ;
Sattler, W .
JOURNAL OF NEUROCHEMISTRY, 2004, 89 (04) :939-950
[10]  
Bawa R, 2013, FUNCT FOOD SCI TECHN, P720