Automated synaptic connectivity inference for volume electron microscopy

被引:85
作者
Dorkenwald, Sven [1 ,2 ]
Schubert, Philipp J. [1 ,2 ]
Killinger, Marius F. [1 ,2 ]
Urban, Gregor [2 ]
Mikula, Shawn [1 ]
Svara, Fabian [1 ]
Kornfeld, Joergen [1 ]
机构
[1] Max Planck Inst Neurobiol, Planegg Martinsried, Germany
[2] Max Planck Inst Med Res, Heidelberg, Germany
关键词
PROJECTION NEURONS; NEURAL ACTIVITY; DIRECTION-SELECTIVITY; WIRING SPECIFICITY; CEREBRAL-CORTEX; AREA-X; RECONSTRUCTION; CIRCUIT; SEGMENTATION; SYNAPSES;
D O I
10.1038/nmeth.4206
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Teravoxel volume electron microscopy data sets from neural tissue can now be acquired in weeks, but data analysis requires years of manual labor. We developed the SyConn framework, which uses deep convolutional neural networks and random forest classifiers to infer a richly annotated synaptic connectivity matrix from manual neurite skeleton reconstructions by automatically identifying mitochondria, synapses and their types, axons, dendrites, spines, myelin, somata and cell types. We tested our approach on serial block-face electron microscopy data sets from zebrafish, mouse and zebra finch, and computed the synaptic wiring of songbird basal ganglia. We found that, for example, basal-ganglia cell types with high firing rates in vivo had higher densities of mitochondria and vesicles and that synapse sizes and quantities scaled systematically, depending on the innervated postsynaptic cell types.
引用
收藏
页码:435 / +
页数:12
相关论文
共 51 条
[1]  
Ahrens MB, 2013, NAT METHODS, V10, P413, DOI [10.1038/NMETH.2434, 10.1038/nmeth.2434]
[2]   FUNCTIONAL ARCHITECTURE OF BASAL GANGLIA CIRCUITS - NEURAL SUBSTRATES OF PARALLEL PROCESSING [J].
ALEXANDER, GE ;
CRUTCHER, MD .
TRENDS IN NEUROSCIENCES, 1990, 13 (07) :266-271
[3]  
[Anonymous], 2010, P PYTH SCI C
[4]  
[Anonymous], PREPRINT
[5]   Learning Context Cues for Synapse Segmentation [J].
Becker, Carlos ;
Ali, Karim ;
Knott, Graham ;
Fua, Pascal .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (10) :1864-1877
[6]   SYNAPTIC INPUT AND OUTPUT OF PARVALBUMIN-IMMUNOREACTIVE NEURONS IN THE NEOSTRIATUM OF THE RAT [J].
BENNETT, BD ;
BOLAM, JP .
NEUROSCIENCE, 1994, 62 (03) :707-719
[7]   SegEM: Efficient Image Analysis for High-Resolution Connectomics [J].
Berning, Manuel ;
Boergens, Kevin M. ;
Helmstaedter, Moritz .
NEURON, 2015, 87 (06) :1193-1206
[8]   Volume electron microscopy for neuronal circuit reconstruction [J].
Briggman, Kevin L. ;
Bock, Davi D. .
CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (01) :154-161
[9]   Wiring specificity in the direction-selectivity circuit of the retina [J].
Briggman, Kevin L. ;
Helmstaedter, Moritz ;
Denk, Winfried .
NATURE, 2011, 471 (7337) :183-U67
[10]   Is the songbird area X striatal, pallidal, or both? An anatomical study [J].
Carrillo, GD ;
Doupe, AJ .
JOURNAL OF COMPARATIVE NEUROLOGY, 2004, 473 (03) :415-437