The interplays between epigallocatechin-3-gallate (EGCG) and Aspergillus niger RAF106 based on metabolism

被引:5
|
作者
Liu, Tong [1 ,2 ]
Wang, Jie [2 ]
Du, Min-ru [2 ]
Wang, Ying-si [1 ]
Fang, Xiang [2 ]
Peng, Hong [1 ]
Shi, Qing-shan [1 ,2 ,3 ]
Xie, Xiao-bao [1 ,2 ,3 ]
Zhou, Gang [1 ,2 ,3 ]
机构
[1] Guangdong Acad Sci, Inst Microbiol, Guangdong Prov Key Lab Microbial Culture Collect &, State Key Lab Appl Microbiol Southern China, Guangzhou 510070, Guangdong, Peoples R China
[2] South China Agr Univ, Coll Food Sci, Guangdong Prov Key Lab Nutraceut & Funct Foods, Guangzhou 510642, Guangdong, Peoples R China
[3] Guangdong Acad Sci, Inst Microbiol, Guangzhou 510070, Guangdong, Peoples R China
关键词
Epigallocatechin-3-gallate (EGCG); Aspergillus niger; Metabolomics; Biotransformation; Fungal growth; TEA CATECHIN; ANTIOXIDANT PROPERTIES; POLYPHENOLS; GALLATE; BACTERIA; PROLIFERATION; MECHANISM; ACID;
D O I
10.1016/j.funbio.2022.09.001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Epigallocatechin-3-gallate (EGCG) is a vital kind of catechin with high bioactive activities, however, limited research has been conducted to elucidate the molecular basis of EGCG biotransformation by Aspergillus niger and the underlying regulatory mechanisms. In this study, A. niger RAF106, isolated from Pu-erh tea, was applied to conduct the EGCG fermentation process, and the samples were collected at different fermentation times to determine the intermediary metabolites of EGCG and the metabolome as well as physiological activity changes of A. niger RAF106. The results demonstrated that EGCG enhances the growth of A. niger RAF106 by promoting conidial germination and hyphae branching. Meanwhile, metabolomic analyses indicated that EGCG significantly regulates the amino acid metabolism of A. niger RAF106. Furthermore, metabolomic analyses also revealed that the levels of original secondary metabolites in the supernatant of the cultures changed significantly from the fermentation stage M2 to M3, in which the main differentially changed metabolites (DCMs) were flavonoids. Most of these flavonoids exhibited antioxidant properties and thus increased the radical scavenging activity of the supernatant of the cultures. In addition, we also found several intermediary metabolites of EGCG, GA, and EGC, including oolonghomobisflavan A, (-)-Epigallocatechin 3, 5-di-gallate, (-)-Epigallocatechin 3-(3-methyl-gallate) (-)-Catechin 3-O-gallate, 4 '-Methyl-(-)-epigallocatechin 3-(4-methyl-gallate), myricetin, prodelphinidin B, 7-galloylcatechin, and 3-hydroxyphenylacetic acid. These findings contribute to improving the bioavailability of EGCG and help mine highly active metabolites, which can be used as raw materials for the development of pharmaceutical intermediates or functional foods. In addition, the results also provide a theoretical basis for better control of the risk of A. niger origin and the regulatory mechanisms of the biotransformation process mediated by A. niger. (c) 2022 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:727 / 737
页数:11
相关论文
共 50 条
  • [1] The interplay between (-)-epigallocatechin-3-gallate (EGCG) and Aspergillus niger RAF106, an EGCG-biotransforming fungus derived from Pu-erh tea
    Liu, Tong
    Zhou, Gang
    Du, Minru
    Zhang, Xiao
    Zhou, Shiyu
    Chen, Guojun
    Liao, Zhenlin
    Zhong, Qingping
    Wang, Li
    Xu, Xinya
    Fang, Xiang
    Wang, Jie
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2023, 180
  • [2] Pig IVF is impaired by epigallocatechin-3-gallate (EGCG)
    Spinaci, M.
    Volpe, S.
    De Ambrogi, M.
    Tamanini, C.
    Seren, E.
    Galeati, G.
    REPRODUCTION IN DOMESTIC ANIMALS, 2006, 41 (04) : 341 - 341
  • [3] Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG)
    Singh, Neha Atulkumar
    Mandal, Abul Kalam Azad
    Khan, Zaved Ahmed
    NUTRITION JOURNAL, 2016, 15
  • [4] Analysis of the Antimicrobial Activity of Epigallocatechin-3-Gallate (EGCG)
    Muravieva, V. V.
    Bembeeva, B. O.
    Priputnevich, T. V.
    Kiselev, V. I.
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2024, 177 (01) : 88 - 92
  • [5] Epigallocatechin-3-gallate(EGCG): Mechanisms and the Combined Applications
    Song, Xuekun
    Du, Juan
    Zhao, Wenyuan
    Guo, Zheng
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2017, 20 (10) : 872 - 885
  • [6] Effects of Epigallocatechin-3-gallate (EGCG) on boar sperm
    Spinaci, M.
    Tamanini, C.
    Seren, E.
    Galeati, G.
    REPRODUCTION IN DOMESTIC ANIMALS, 2008, 43 : 182 - 182
  • [7] Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives
    Nagle, Dale G.
    Ferreira, Daneel
    Zhou, Yu-Dong
    PHYTOCHEMISTRY, 2006, 67 (17) : 1849 - 1855
  • [8] Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG)
    Neha Atulkumar Singh
    Abul Kalam Azad Mandal
    Zaved Ahmed Khan
    Nutrition Journal, 15
  • [9] BINDING INTERACTION BETWEEN (-)-EPIGALLOCATECHIN-3-GALLATE (EGCG) OF GREEN TEA AND PEPSIN
    Li, Y.
    Lu, F. Q.
    Feng, Y.
    He, Z. D.
    Wu, X. L.
    ACTA ALIMENTARIA, 2016, 45 (01) : 129 - 140
  • [10] Modulation of signal transduction by (-)-epigallocatechin-3-gallate (EGCG) in sebocyte
    Kim, J.
    Thiboutot, D. M.
    Suh, D.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2010, 130 : S101 - S101