OPTIMAL COPLANAR ORBIT TRANSFER IN LEVI CIVITA COORDINATES

被引:0
作者
de Almeida, Marcelino M. [1 ]
Akella, Maruthi [2 ]
机构
[1] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, 210 East 24 St WRW,1 Univ Stn,C0600, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Engn, 210 East 24 St WRW,1 Univ Stn,C0600, Austin, TX 78712 USA
来源
SPACEFLIGHT MECHANICS 2017, PTS I - IV | 2017年 / 160卷
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper addresses optimal planar orbit transfers using Levi-Civita coordinates through continuation. The Levi-Civita coordinates is a useful orbit representation due to the fact that, for a body traveling through a trajectory with fixed semi-major axis, the equations of motion for these coordinates are represented by linear dynamics. In fact, the solution to the unperturbed EOM it that of a simple harmonic oscillator with the oscillation frequency as function of the semi-major axis itself. Another relevant aspect of Levi-Civita coordinates is that the unperturbed dynamics presents equally segmented position steps for fixed time step segments, which makes fixed step numerical propagation easier for highly eccentric orbits. These properties of the Levi-Civita coordinates motivate this work, which uses Sequential Quadratic Programming to obtain optimal coplanar orbit transfer in these coordinates. We apply the optimization method to different orbit transfer scenarios and evaluate the performance of the algorithm. The near-linear characteristics of Levi-Civita allows Sequential Quadratic Programming methods to converge quickly and reliably if there is tolerance for slight errors in the final orbital elements.
引用
收藏
页码:3951 / 3966
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 2015, Gurobi optimizer reference manual
[2]  
[Anonymous], 2000, J SPACE MISSION ARCH
[3]   New smoothing techniques for solving bang-bang optimal control problems-numerical results and statistical interpretation [J].
Bertrand, R ;
Epenoy, R .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2002, 23 (04) :171-197
[4]   Survey of numerical methods for trajectory optimization [J].
Betts, JT .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1998, 21 (02) :193-207
[5]  
Boggs P.T., 1995, ACTA NUMER, V4, P1, DOI [DOI 10.1017/S0962492900002518, 10.1017/s0962492900002518]
[6]  
Boyd S, 2004, CONVEX OPTIMIZATION
[7]   New Dawn for ELECTRIC ROCKETS [J].
Choueiri, Edgar Y. .
SCIENTIFIC AMERICAN, 2009, 300 (02) :58-65
[8]   OPTIMUM POWER-LIMITED ORBIT TRANSFER IN STRONG GRAVITY FIELDS [J].
EDELBAUM, TN .
AIAA JOURNAL, 1965, 3 (05) :921-&
[9]   OPTIMUM LOW-THRUST RENDEZVOUS AND STATION KEEPING [J].
EDELBAUM, TN .
AIAA JOURNAL, 1964, 2 (07) :1196-1201
[10]  
Gath P.F., 2002, CAMTOS A SOFTWARE SU