Distributed RIS-Assisted FD Systems with Discrete Phase Shifts: A Reinforcement Learning Approach

被引:8
作者
Faisal, Alice [1 ]
Al-Nahhal, Ibrahim [1 ]
Dobre, Octavia A. [1 ]
Ngatched, Telex M. N. [1 ]
机构
[1] Mem Univ, Fac Engn & Appl Sci, St John, NF, Canada
来源
2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022) | 2022年
基金
加拿大自然科学与工程研究理事会;
关键词
Reinforcement learning (RL); full-duplex; reconfigurable intelligent surface (RIS); discrete phase shifts; distributed RIS; INTELLIGENT REFLECTING SURFACE; OPTIMIZATION;
D O I
10.1109/GLOBECOM48099.2022.10001723
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the sum-rate maximization problem of a distributed reconfigurable intelligent surface (RIS)-assisted full-duplex wireless system, where the availability of finite-resolution phase shifts at the RIS is considered. The aim is to optimize the transmit beamformers and RIS phase shifts, subject to the practical discrete phase shift and power constraints. The optimization problem is decoupled into two sub-problems; transmit beamforming and RIS phase shifts optimization. The transmit beamforming problem is mathematically addressed using approximate and closed-form solutions, while the discrete RIS phase shifts are optimized using a reinforcement learning (RL) approach. The existence and absence of a strong direct line-of-sight is investigated to show the effect of the phase shift optimization on the sum-rate. Simulation results illustrate that the proposed RL for the discrete phase shifts optimization provides a near-optimal performance with a small number of bits even for a large number of RIS elements, while improving the sum-rate compared to the random phase shift scenario and reducing the computational complexity compared to the state-of-the-art works.
引用
收藏
页码:5862 / 5867
页数:6
相关论文
共 18 条
  • [1] Reconfigurable Intelligent Surface Optimization for Uplink Sparse Code Multiple Access
    Al-Nahhal, Ibrahim
    Dobre, Octavia A.
    Basar, Ertugrul
    Ngatched, Telex M. N.
    Ikki, Salama
    [J]. IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) : 133 - 137
  • [2] Reconfigurable Intelligent Surface-Assisted Uplink Sparse Code Multiple Access
    Al-Nahhal, Ibrahim
    Dobre, Octavia A.
    Basar, Ertugrul
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (06) : 2058 - 2062
  • [3] Alghamdi R., 2020, IEEE ACCESS, V8
  • [4] Intelligent Reflecting Surface Aided Full-Duplex Communication: Passive Beamforming and Deployment Design
    Cai, Yunlong
    Zhao, Ming-Min
    Xu, Kaidi
    Zhang, Rui
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (01) : 383 - 397
  • [5] Faisal A., 2022, IEEE COMMUN LETT
  • [6] Deep Reinforcement Learning for Optimizing RIS-Assisted HD-FD Wireless Systems
    Faisal, Alice
    Al-Nahhal, Ibrahim
    Dobre, Octavia A.
    Ngatched, Telex M. N.
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3893 - 3897
  • [7] Machine Learning Approaches for Reconfigurable Intelligent Surfaces: A Survey
    Faisal, K. M.
    Choi, Wooyeol
    [J]. IEEE ACCESS, 2022, 10 : 27343 - 27367
  • [8] Deep Reinforcement Learning Based Intelligent Reflecting Surface Optimization for MISO Communication Systems
    Feng, Keming
    Wang, Qisheng
    Li, Xiao
    Wen, Chao-Kai
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (05) : 745 - 749
  • [9] Human-level control through deep reinforcement learning
    Mnih, Volodymyr
    Kavukcuoglu, Koray
    Silver, David
    Rusu, Andrei A.
    Veness, Joel
    Bellemare, Marc G.
    Graves, Alex
    Riedmiller, Martin
    Fidjeland, Andreas K.
    Ostrovski, Georg
    Petersen, Stig
    Beattie, Charles
    Sadik, Amir
    Antonoglou, Ioannis
    King, Helen
    Kumaran, Dharshan
    Wierstra, Daan
    Legg, Shane
    Hassabis, Demis
    [J]. NATURE, 2015, 518 (7540) : 529 - 533
  • [10] Multiuser Full-Duplex Two-Way Communications via Intelligent Reflecting Surface
    Peng, Zhangjie
    Zhang, Zhenkun
    Pan, Cunhua
    Li, Li
    Swindlehurst, A. Lee
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 837 - 851