USING A GENERATIVE ADVERSARIAL NETWORK FOR CT NORMALIZATION AND ITS IMPACT ON RADIOMIC FEATURES

被引:0
作者
Wei, Leihao [1 ,3 ]
Lin, Yannan [2 ,3 ]
Hsu, William [2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90032 USA
[2] Univ Calif Los Angeles, Bioengn, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Med & Imaging Informat, Los Angeles, CA 90032 USA
[4] Univ Calif Los Angeles, Radiol Sci, Los Angeles, CA USA
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
lung cancer; radiomics; generative adversarial networks; deep neural networks; denoising;
D O I
10.1109/isbi45749.2020.9098724
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computer-Aided-Diagnosis (CADx) systems assist radiologists with identifying and classifying potentially malignant pulmonary nodules on chest CT scans using morphology and texture-based (radiomic) features. However, radiomic features are sensitive to differences in acquisitions due to variations in dose levels and slice thickness. This study investigates the feasibility of generating a normalized scan from heterogeneous CT scans as input. We obtained projection data from 40 low-dose chest CT scans, simulating acquisitions at 10%, 25% and 50% dose and reconstructing the scans at 1.0mm and 2.0mm slice thickness. A 3D generative adversarial network (GAN) was used to simultaneously normalize reduced dose, thick slice (2.0mm) images to normal dose (100%), thinner slice (1.0mm) images. We evaluated the normalized image quality using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS). Our GAN improved perceptual similarity by 35%, compared to a baseline CNN method. Our analysis also shows that the GAN-based approach led to a significantly smaller error (p-value < 0.05) in nine studied radiomic features. These results indicated that GANs could be used to normalize heterogeneous CT images and reduce the variability in radiomic feature values.
引用
收藏
页码:844 / 848
页数:5
相关论文
共 50 条
  • [41] Reproducibility of radiomic features using network analysis and its application in Wasserstein k-means clustering
    Oh, Jung Hun
    Apte, Aditya P.
    Katsoulakis, Evangelia
    Riaz, Nadeem
    Hatzoglou, Vaios
    Yu, Yao
    Mahmood, Usman
    Veeraraghavan, Harini
    Pouryahya, Maryam
    Iyer, Aditi
    Shukla-Dave, Amita
    Tannenbaum, Allen
    Lee, Nancy Y.
    Deasy, Joseph O.
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (03)
  • [42] SolarGAN: Multivariate Solar Data Imputation Using Generative Adversarial Network
    Zhang, Wenjie
    Luo, Yonghong
    Zhang, Ying
    Srinivasan, Dipti
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (01) : 743 - 746
  • [43] Structural floor acceleration denoising method using generative adversarial network
    Shen, Junkai
    Zhang, Lingxin
    Kusunoki, Koichi
    Yeow, Trevor Zhiqing
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2023, 173
  • [44] Refinement of image quality in panoramic radiography using a generative adversarial network
    Kim, Hak-Sun
    Ha, Eun-Gyu
    Lee, Ari
    Choi, Yoon Joo
    Jeon, Kug Jin
    Han, Sang- Sun
    Lee, Chena
    DENTOMAXILLOFACIAL RADIOLOGY, 2023, 52 (05)
  • [45] Auto-Denoising for EEG Signals Using Generative Adversarial Network
    An, Yang
    Lam, Hak Keung
    Ling, Sai Ho
    SENSORS, 2022, 22 (05)
  • [46] Rainfall prediction using generative adversarial networks with convolution neural network
    Venkatesh, R.
    Balasubramanian, C.
    Kaliappan, M.
    SOFT COMPUTING, 2021, 25 (06) : 4725 - 4738
  • [47] Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network
    Luo, Yuhao
    Chen, Kun
    Liu, Lei
    Liu, Jicheng
    Mao, Jianbo
    Ke, Genjie
    Sun, Mingzhai
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (12) : 3374 - 3383
  • [48] Complementary Photoplethysmogram Synthesis From Electrocardiogram Using Generative Adversarial Network
    Shin, Heean
    Sun, Sukkyu
    Lee, Joonnyong
    Kim, Hee Chan
    IEEE ACCESS, 2021, 9 (09): : 70639 - 70649
  • [49] Enhancing network intrusion detection performance using generative adversarial networks
    Zhao, Xinxing
    Fok, Kar Wai
    Thing, Vrizlynn L. L.
    COMPUTERS & SECURITY, 2024, 145
  • [50] Image Clustering Using an Augmented Generative Adversarial Network and Information Maximization
    Ntelemis, Foivos
    Jin, Yaochu
    Thomas, Spencer A.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7461 - 7474