USING A GENERATIVE ADVERSARIAL NETWORK FOR CT NORMALIZATION AND ITS IMPACT ON RADIOMIC FEATURES
被引:0
作者:
Wei, Leihao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90032 USA
Univ Calif Los Angeles, Med & Imaging Informat, Los Angeles, CA 90032 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90032 USA
Wei, Leihao
[1
,3
]
Lin, Yannan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Bioengn, Los Angeles, CA USA
Univ Calif Los Angeles, Med & Imaging Informat, Los Angeles, CA 90032 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90032 USA
Lin, Yannan
[2
,3
]
Hsu, William
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Bioengn, Los Angeles, CA USA
Univ Calif Los Angeles, Med & Imaging Informat, Los Angeles, CA 90032 USA
Univ Calif Los Angeles, Radiol Sci, Los Angeles, CA USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90032 USA
Hsu, William
[2
,3
,4
]
机构:
[1] Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90032 USA
[2] Univ Calif Los Angeles, Bioengn, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Med & Imaging Informat, Los Angeles, CA 90032 USA
[4] Univ Calif Los Angeles, Radiol Sci, Los Angeles, CA USA
来源:
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020)
|
2020年
基金:
美国国家科学基金会;
美国国家卫生研究院;
关键词:
lung cancer;
radiomics;
generative adversarial networks;
deep neural networks;
denoising;
D O I:
10.1109/isbi45749.2020.9098724
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
Computer-Aided-Diagnosis (CADx) systems assist radiologists with identifying and classifying potentially malignant pulmonary nodules on chest CT scans using morphology and texture-based (radiomic) features. However, radiomic features are sensitive to differences in acquisitions due to variations in dose levels and slice thickness. This study investigates the feasibility of generating a normalized scan from heterogeneous CT scans as input. We obtained projection data from 40 low-dose chest CT scans, simulating acquisitions at 10%, 25% and 50% dose and reconstructing the scans at 1.0mm and 2.0mm slice thickness. A 3D generative adversarial network (GAN) was used to simultaneously normalize reduced dose, thick slice (2.0mm) images to normal dose (100%), thinner slice (1.0mm) images. We evaluated the normalized image quality using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS). Our GAN improved perceptual similarity by 35%, compared to a baseline CNN method. Our analysis also shows that the GAN-based approach led to a significantly smaller error (p-value < 0.05) in nine studied radiomic features. These results indicated that GANs could be used to normalize heterogeneous CT images and reduce the variability in radiomic feature values.
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Oh, Jung Hun
Apte, Aditya P.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Apte, Aditya P.
Katsoulakis, Evangelia
论文数: 0引用数: 0
h-index: 0
机构:
Vet Affairs James A Haley, Dept Radiat Oncol, Tampa, FL USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Katsoulakis, Evangelia
Riaz, Nadeem
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, 1275 York Ave, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Riaz, Nadeem
Hatzoglou, Vaios
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiol, 1275 York Ave, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Hatzoglou, Vaios
Yu, Yao
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, 1275 York Ave, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Yu, Yao
Mahmood, Usman
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Mahmood, Usman
Veeraraghavan, Harini
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Veeraraghavan, Harini
Pouryahya, Maryam
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Pouryahya, Maryam
Iyer, Aditi
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Iyer, Aditi
Shukla-Dave, Amita
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Shukla-Dave, Amita
Tannenbaum, Allen
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Tannenbaum, Allen
Lee, Nancy Y.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, 1275 York Ave, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
Lee, Nancy Y.
Deasy, Joseph O.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
机构:
Seoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 08826, South KoreaSeoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 08826, South Korea
Shin, Heean
Sun, Sukkyu
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ Hosp, Biomed Res Inst, Seoul 03080, South KoreaSeoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 08826, South Korea
Sun, Sukkyu
Lee, Joonnyong
论文数: 0引用数: 0
h-index: 0
机构:
Mellowing Factory Co Ltd, Seoul 06053, South KoreaSeoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 08826, South Korea
Lee, Joonnyong
Kim, Hee Chan
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 08826, South Korea
Seoul Natl Univ, Inst Med & Biol Engn, Med Res Ctr, Seoul 08826, South Korea
Seoul Natl Univ, Dept Biomed Engn, Coll Med, Seoul 03080, South KoreaSeoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Seoul 08826, South Korea