USING A GENERATIVE ADVERSARIAL NETWORK FOR CT NORMALIZATION AND ITS IMPACT ON RADIOMIC FEATURES

被引:0
作者
Wei, Leihao [1 ,3 ]
Lin, Yannan [2 ,3 ]
Hsu, William [2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90032 USA
[2] Univ Calif Los Angeles, Bioengn, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Med & Imaging Informat, Los Angeles, CA 90032 USA
[4] Univ Calif Los Angeles, Radiol Sci, Los Angeles, CA USA
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
lung cancer; radiomics; generative adversarial networks; deep neural networks; denoising;
D O I
10.1109/isbi45749.2020.9098724
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computer-Aided-Diagnosis (CADx) systems assist radiologists with identifying and classifying potentially malignant pulmonary nodules on chest CT scans using morphology and texture-based (radiomic) features. However, radiomic features are sensitive to differences in acquisitions due to variations in dose levels and slice thickness. This study investigates the feasibility of generating a normalized scan from heterogeneous CT scans as input. We obtained projection data from 40 low-dose chest CT scans, simulating acquisitions at 10%, 25% and 50% dose and reconstructing the scans at 1.0mm and 2.0mm slice thickness. A 3D generative adversarial network (GAN) was used to simultaneously normalize reduced dose, thick slice (2.0mm) images to normal dose (100%), thinner slice (1.0mm) images. We evaluated the normalized image quality using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS). Our GAN improved perceptual similarity by 35%, compared to a baseline CNN method. Our analysis also shows that the GAN-based approach led to a significantly smaller error (p-value < 0.05) in nine studied radiomic features. These results indicated that GANs could be used to normalize heterogeneous CT images and reduce the variability in radiomic feature values.
引用
收藏
页码:844 / 848
页数:5
相关论文
共 50 条
  • [31] Counterfeit Anomaly Using Generative Adversarial Network for Anomaly Detection
    Shen, Haocheng
    Chen, Jingkun
    Wang, Ruixuan
    Zhang, Jianguo
    IEEE ACCESS, 2020, 8 (08): : 133051 - 133062
  • [32] Ad creative generation using reinforced generative adversarial network
    Terzioglu, Sumeyra
    Cogalmis, Kevser Nur
    Bulut, Ahmet
    ELECTRONIC COMMERCE RESEARCH, 2024, 24 (03) : 1491 - 1507
  • [33] Poststack Seismic Data Compression Using a Generative Adversarial Network
    dos Santos Ribeiro, Kevyn Swhants
    Schiavon, Ana Paula
    Navarro, Joao Paulo
    Vieira, Marcelo Bernardes
    Villela, Saulo Moraes
    Cruz E Silva, Pedro Mario
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [34] Detecting Anomalies in Videos using Perception Generative Adversarial Network
    Yaxiang Fan
    Gongjian Wen
    Fei Xiao
    Shaohua Qiu
    Deren Li
    Circuits, Systems, and Signal Processing, 2022, 41 : 994 - 1018
  • [35] Ultrasound Image Beamforming Optimization Using a Generative Adversarial Network
    Seoni, Silvia
    Salvi, Massimo
    Matrone, Giulia
    Meiburger, Kristen M.
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [36] ThoughtViz: Visualizing Human Thoughts Using Generative Adversarial Network
    Tirupattur, Praveen
    Rawat, Yogesh Singh
    Spampinato, Concetto
    Shah, Mubarak
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 950 - 958
  • [37] Impact of Satellite Sounding Data on Virtual Visible Imagery Generation Using Conditional Generative Adversarial Network
    Kim, Ji-Hye
    Ryu, Sumin
    Jeong, Jaehoon
    So, Damwon
    Ban, Hyun-Ju
    Hong, Sungwook
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4532 - 4541
  • [38] Normalization of HE-stained histological images using cycle consistent generative adversarial networks
    Marlen Runz
    Daniel Rusche
    Stefan Schmidt
    Martin R. Weihrauch
    Jürgen Hesser
    Cleo-Aron Weis
    Diagnostic Pathology, 16
  • [39] Normalization of HE-stained histological images using cycle consistent generative adversarial networks
    Runz, Marlen
    Rusche, Daniel
    Schmidt, Stefan
    Weihrauch, Martin R.
    Hesser, Juergen
    Weis, Cleo-Aron
    DIAGNOSTIC PATHOLOGY, 2021, 16 (01)
  • [40] Deep Representation Clustering of Multitype Damage Features Based on Unsupervised Generative Adversarial Network
    Li, Xiao
    Zhang, Feng-Liang
    Lei, Jun
    Xiang, Wei
    IEEE SENSORS JOURNAL, 2024, 24 (16) : 25374 - 25393