USING A GENERATIVE ADVERSARIAL NETWORK FOR CT NORMALIZATION AND ITS IMPACT ON RADIOMIC FEATURES

被引:0
作者
Wei, Leihao [1 ,3 ]
Lin, Yannan [2 ,3 ]
Hsu, William [2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90032 USA
[2] Univ Calif Los Angeles, Bioengn, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Med & Imaging Informat, Los Angeles, CA 90032 USA
[4] Univ Calif Los Angeles, Radiol Sci, Los Angeles, CA USA
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
lung cancer; radiomics; generative adversarial networks; deep neural networks; denoising;
D O I
10.1109/isbi45749.2020.9098724
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computer-Aided-Diagnosis (CADx) systems assist radiologists with identifying and classifying potentially malignant pulmonary nodules on chest CT scans using morphology and texture-based (radiomic) features. However, radiomic features are sensitive to differences in acquisitions due to variations in dose levels and slice thickness. This study investigates the feasibility of generating a normalized scan from heterogeneous CT scans as input. We obtained projection data from 40 low-dose chest CT scans, simulating acquisitions at 10%, 25% and 50% dose and reconstructing the scans at 1.0mm and 2.0mm slice thickness. A 3D generative adversarial network (GAN) was used to simultaneously normalize reduced dose, thick slice (2.0mm) images to normal dose (100%), thinner slice (1.0mm) images. We evaluated the normalized image quality using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS). Our GAN improved perceptual similarity by 35%, compared to a baseline CNN method. Our analysis also shows that the GAN-based approach led to a significantly smaller error (p-value < 0.05) in nine studied radiomic features. These results indicated that GANs could be used to normalize heterogeneous CT images and reduce the variability in radiomic feature values.
引用
收藏
页码:844 / 848
页数:5
相关论文
共 50 条
  • [21] Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network
    Xin Yi
    Paul Babyn
    Journal of Digital Imaging, 2018, 31 : 655 - 669
  • [22] Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network
    Yi, Xin
    Babyn, Paul
    JOURNAL OF DIGITAL IMAGING, 2018, 31 (05) : 655 - 669
  • [23] Lung CT harmonization of paired reconstruction kernel images using generative adversarial networks
    Krishnan, Aravind R.
    Xu, Kaiwen
    Li, Thomas Z.
    Remedios, Lucas W.
    Sandler, Kim L.
    Maldonado, Fabien
    Landman, Bennett A.
    MEDICAL PHYSICS, 2024, 51 (08) : 5510 - 5523
  • [24] Generating Dance Videos Using Pose Transfer Generative Adversarial Network With Multiple Scale Region Extractor and Learnable Region Normalization
    Cheng, Hsu-Yung
    Yu, Chih-Chang
    Lin, Chih-Lung
    IEEE MULTIMEDIA, 2022, 29 (01) : 47 - 54
  • [25] A histogram-driven generative adversarial network for brain MRI to CT synthesis
    Peng, Yanjun
    Sun, Jindong
    Ren, Yande
    Li, Dapeng
    Guo, Yanfei
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [26] Improving Road Semantic Segmentation Using Generative Adversarial Network
    Abdollahi, Abolfazl
    Pradhan, Biswajeet
    Sharma, Gaurav
    Maulud, Khairul Nizam Abdul
    Alamri, Abdullah
    IEEE ACCESS, 2021, 9 : 64381 - 64392
  • [27] Skin Cancer Classification Through Quantized Color Features and Generative Adversarial Network
    Maiti, Ananjan
    Chatterjee, Biswajoy
    Santosh, K. C.
    INTERNATIONAL JOURNAL OF AMBIENT COMPUTING AND INTELLIGENCE, 2021, 12 (03) : 75 - 97
  • [28] Detecting Anomalies in Videos using Perception Generative Adversarial Network
    Fan, Yaxiang
    Wen, Gongjian
    Xiao, Fei
    Qiu, Shaohua
    Li, Deren
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (02) : 994 - 1018
  • [29] Superresolution Land Cover Mapping Using a Generative Adversarial Network
    Shang, Cheng
    Li, Xiaodong
    Foody, Giles M.
    Du, Yun
    Ling, Feng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Seismic Impedance Inversion Using Conditional Generative Adversarial Network
    Meng, Delin
    Wu, Bangyu
    Wang, Zhiguo
    Zhu, Zhaolin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19