USING A GENERATIVE ADVERSARIAL NETWORK FOR CT NORMALIZATION AND ITS IMPACT ON RADIOMIC FEATURES

被引:0
作者
Wei, Leihao [1 ,3 ]
Lin, Yannan [2 ,3 ]
Hsu, William [2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90032 USA
[2] Univ Calif Los Angeles, Bioengn, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Med & Imaging Informat, Los Angeles, CA 90032 USA
[4] Univ Calif Los Angeles, Radiol Sci, Los Angeles, CA USA
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
lung cancer; radiomics; generative adversarial networks; deep neural networks; denoising;
D O I
10.1109/isbi45749.2020.9098724
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computer-Aided-Diagnosis (CADx) systems assist radiologists with identifying and classifying potentially malignant pulmonary nodules on chest CT scans using morphology and texture-based (radiomic) features. However, radiomic features are sensitive to differences in acquisitions due to variations in dose levels and slice thickness. This study investigates the feasibility of generating a normalized scan from heterogeneous CT scans as input. We obtained projection data from 40 low-dose chest CT scans, simulating acquisitions at 10%, 25% and 50% dose and reconstructing the scans at 1.0mm and 2.0mm slice thickness. A 3D generative adversarial network (GAN) was used to simultaneously normalize reduced dose, thick slice (2.0mm) images to normal dose (100%), thinner slice (1.0mm) images. We evaluated the normalized image quality using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS). Our GAN improved perceptual similarity by 35%, compared to a baseline CNN method. Our analysis also shows that the GAN-based approach led to a significantly smaller error (p-value < 0.05) in nine studied radiomic features. These results indicated that GANs could be used to normalize heterogeneous CT images and reduce the variability in radiomic feature values.
引用
收藏
页码:844 / 848
页数:5
相关论文
共 50 条
  • [1] Generative adversarial network with radiomic feature reproducibility analysis for computed tomography denoising
    Lee, Jina
    Jeon, Jaeik
    Hong, Youngtaek
    Jeong, Dawun
    Jang, Yeonggul
    Jeon, Byunghwan
    Baek, Hye Jin
    Cho, Eun
    Shim, Hackjoon
    Chang, Hyuk-Jae
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 159
  • [2] Face illumination normalization based on generative adversarial network
    Dequan Guo
    Lingrui Zhu
    Shenggui Ling
    Tianxiang Li
    Gexiang Zhang
    Qiang Yang
    Ping Wang
    Shiqi Jiang
    Sidong Wu
    Junbao Liu
    Natural Computing, 2023, 22 : 105 - 117
  • [3] Face illumination normalization based on generative adversarial network
    Guo, Dequan
    Zhu, Lingrui
    Ling, Shenggui
    Li, Tianxiang
    Zhang, Gexiang
    Yang, Qiang
    Wang, Ping
    Jiang, Shiqi
    Wu, Sidong
    Liu, Junbao
    NATURAL COMPUTING, 2023, 22 (01) : 105 - 117
  • [4] A generative adversarial network to Reinhard stain normalization for histopathology image analysis
    Alhassan, Afnan M.
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (10)
  • [5] STAIN NORMALIZATION OF HISTOPATHOLOGY IMAGES USING GENERATIVE ADVERSARIAL NETWORKS
    Zanjani, Farhad Ghazvinian
    Zinger, Svitlana
    Bejnordi, Babak Ehteshami
    van der Laak, Jeroen A. W. M.
    de With, Peter H. N.
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 573 - 577
  • [6] CT-Scan Denoising Using a Charbonnier Loss Generative Adversarial Network
    Gajera, Binit
    Kapil, Siddhant Raj
    Ziaei, Dorsa
    Mangalagiri, Jayalakshmi
    Siegel, Eliot
    Chapman, David
    IEEE ACCESS, 2021, 9 : 84093 - 84109
  • [7] A New ECG Denoising Framework Using Generative Adversarial Network
    Singh, Pratik
    Pradhan, Gayadhar
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (02) : 759 - 764
  • [8] Unpaired Image Denoising Using a Generative Adversarial Network in X-Ray CT
    Park, Hyoung Suk
    Baek, Jineon
    You, Sun Kyoung
    Choi, Jae Kyu
    Seo, Jin Keun
    IEEE ACCESS, 2019, 7 : 110414 - 110425
  • [9] Research Progress on Generative Adversarial Network with its Applications
    Zhang, Zhongwei
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 396 - 399
  • [10] A Generative Adversarial Network for Multistyle Unsupervised Image Transfer Based on Dynamic Position Normalization
    Rang, Xiaodi
    Ma, Chaoqing
    Zheng, Qiang
    Zhao, Guangzhi
    IEEE ACCESS, 2022, 10 : 96284 - 96295