High-energy γ-photon polarization in nonlinear Breit-Wheeler pair production and γ polarimetry

被引:31
作者
Wan, Feng [1 ]
Wang, Yu [1 ]
Guo, Ren-Tong [1 ]
Chen, Yue-Yue [2 ]
Shaisultanov, Rashid [3 ]
Xu, Zhong-Feng [1 ]
Hatsagortsyan, Karen Z. [3 ]
Keitel, Christoph H. [3 ]
Li, Jian-Xing [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Peoples R China
[2] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
[3] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
INTENSE LASER; LIGHT; FIELD; PARTICLES; ELECTRON; EMISSION; BEAMS; WAVE;
D O I
10.1103/PhysRevResearch.2.032049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interaction of an unpolarized electron beam with a counterpropagating ultraintense linearly polarized laser pulse is investigated in the quantum radiation-dominated regime. We employ a semiclassical Monte Carlo method to describe spin-resolved electron dynamics, photon emissions and polarization, and pair production. Abundant high-energy linearly polarized gamma photons are generated intermediately during this interaction via nonlinear Compton scattering, with an average polarization degree of more than 50%, further interacting with the laser fields to produce electron-positron pairs due to the nonlinear Breit-Wheeler process. The photon polarization is shown to significantly affect the pair yield by a factor of more than 10%. The considered signature of the photon polarization in the pair's yield can be experimentally identified in a prospective two-stage setup. Moreover, with currently achievable laser facilities the signature can serve also for the polarimetry of high-energy high-flux gamma photons.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Multi-stage scheme for nonlinear Breit-Wheeler pair-production utilising ultra-intense laser-solid interactions [J].
Duff, M. J. ;
Capdessus, R. ;
Ridgers, C. P. ;
McKenna, P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (09)
[32]   Strong-field Breit-Wheeler pair production with bremsstrahlung γ rays in the perturbative-to-nonperturbative-transition regime [J].
Eckey, A. ;
Voitkiv, A. B. ;
Mueller, C. .
PHYSICAL REVIEW A, 2022, 105 (01)
[33]   Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process [J].
Xue, Kun ;
Guo, Ren-Tong ;
Wan, Feng ;
Shaisultanov, Rashid ;
Chen, Yue-Yue ;
Xu, Zhong-Feng ;
Ren, Xue-Guang ;
Hatsagortsyan, Karen Z. ;
Keitel, Christoph H. ;
Li, Jian-Xing .
FUNDAMENTAL RESEARCH, 2022, 2 (04) :539-545
[34]   Investigation of γ-photon sources using near-critical density targets towards the optimization of the linear Breit-Wheeler process [J].
Vladisavlevici, Iuliana-Mariana ;
Ribeyre, Xavier ;
Vizman, Daniel ;
d'Humieres, Emmanuel .
PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (03)
[35]   Kinematically boosted pairs from the nonlinear Breit-Wheeler process in small-angle laser collisions [J].
Chen, Pisin ;
Labun, Lance .
PHYSICS OF PLASMAS, 2023, 30 (08)
[36]   Multi-photon regime of non-linear Breit-Wheeler and Compton processes in short linearly and circularly polarized laser pulses [J].
Titov, Alexander ;
Otto, Andreas ;
Kaempfer, Burkhard .
EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (02)
[37]   Strong-field Breit-Wheeler pair production in short laser pulses: Identifying multiphoton interference and carrier-envelope-phase effects [J].
Jansen, Martin J. A. ;
Mueller, Carsten .
PHYSICAL REVIEW D, 2016, 93 (05)
[38]   Polarization effects for pair creation by photon in oriented crystals at high energy [J].
Baier, VN ;
Katkov, VM .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 243 (02) :282-292
[39]   Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses [J].
Bulanov, S. S. ;
Schroeder, C. B. ;
Esarey, E. ;
Leemans, W. P. .
PHYSICAL REVIEW A, 2013, 87 (06)
[40]   Efficient high-energy photon production in the supercritical QED regime [J].
Tamburini, Matteo ;
Meuren, Sebastian .
PHYSICAL REVIEW D, 2021, 104 (10)