For p > 2, we consider the quasilinear equation Delta(p)u+\u\(p-2) u= g(u) in the unit ball B of R-N, with homogeneous Neumann boundary conditions. The assumptions on g are very mild and allow the nonlinearity to be possibly supercritical in the sense of Sobolev embeddings. We prove the existence of a nonconstant, positive, radially nondecreasing solution via variational methods. In the case g(u) = \u\ (q-2)u, we detect the asymptotic behavior of these solutions as q -> infinity.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Bonder, JF
Rossi, JD
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Bonder, JF
Rossi, JD
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina