Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations

被引:7
|
作者
Bauer, Florian
Gruene, Lars [1 ]
Semmler, Willi
机构
[1] Univ Bayreuth, Math Inst, POB 101251, D-95440 Bayreuth, Germany
[2] Ctr Empir Macroecon, Bielefeld, Germany
[3] New Sch Univ, New York, NY USA
关键词
Hamilton-Jacobi-Bellman equation; viscosity solution; optimal control; adaptive discretization; spline interpolation;
D O I
10.1016/j.apnum.2006.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the performace of adaptive spline interpolation in semi-Lagrangian discretization schemes for Hamilton-Jacobi-Bellman equations. We investigate the local approximation properties of cubic splines on locally refined grids by a theoretical analysis. Numerical examples show how this method performs in practice. Using those examples we also illustrate numerical stability issues. (c) 2006 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1196 / 1210
页数:15
相关论文
共 50 条
  • [1] Hamilton-Jacobi-Bellman Equations
    Festa, Adriano
    Guglielmi, Roberto
    Hermosilla, Christopher
    Picarelli, Athena
    Sahu, Smita
    Sassi, Achille
    Silva, Francisco J.
    OPTIMAL CONTROL: NOVEL DIRECTIONS AND APPLICATIONS, 2017, 2180 : 127 - 261
  • [2] ON THE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    ACTA APPLICANDAE MATHEMATICAE, 1983, 1 (01) : 17 - 41
  • [3] DEGENERATE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (05): : 329 - 332
  • [4] STOCHASTIC HAMILTON-JACOBI-BELLMAN EQUATIONS
    PENG, SG
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (02) : 284 - 304
  • [5] Verification theorems for Hamilton-Jacobi-Bellman equations
    Garavello, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (05) : 1623 - 1642
  • [6] Hamilton-Jacobi-Bellman equations and optimal control
    Dolcetta, IC
    VARIATIONAL CALCULUS, OPTIMAL CONTROL AND APPLICATIONS, 1998, 124 : 121 - 132
  • [7] NONLINEAR POTENTIALS FOR HAMILTON-JACOBI-BELLMAN EQUATIONS
    NOSOVSKIJ, GV
    ACTA APPLICANDAE MATHEMATICAE, 1993, 30 (02) : 101 - 123
  • [8] Hamilton-Jacobi-Bellman equations on time scales
    Department of Mathematics, Guizhou University, Guiyang, 550025, China
    不详
    Math. Comput. Model., 9-10 (2019-2028):
  • [9] Hamilton-Jacobi-Bellman equations on time scales
    Zhan, Zaidong
    Wei, Wei
    Xu, Honglei
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (9-10) : 2019 - 2028
  • [10] A relaxation scheme for Hamilton-Jacobi-Bellman equations
    Zhou, Shuzi
    Zou, Zhanyong
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 806 - 813