Adaptive spline interpolation for Hamilton-Jacobi-Bellman equations

被引:7
作者
Bauer, Florian
Gruene, Lars [1 ]
Semmler, Willi
机构
[1] Univ Bayreuth, Math Inst, POB 101251, D-95440 Bayreuth, Germany
[2] Ctr Empir Macroecon, Bielefeld, Germany
[3] New Sch Univ, New York, NY USA
关键词
Hamilton-Jacobi-Bellman equation; viscosity solution; optimal control; adaptive discretization; spline interpolation;
D O I
10.1016/j.apnum.2006.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the performace of adaptive spline interpolation in semi-Lagrangian discretization schemes for Hamilton-Jacobi-Bellman equations. We investigate the local approximation properties of cubic splines on locally refined grids by a theoretical analysis. Numerical examples show how this method performs in practice. Using those examples we also illustrate numerical stability issues. (c) 2006 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1196 / 1210
页数:15
相关论文
共 29 条
[1]  
Ahlberg JH., 1967, The Theory of Splines and Their Applications
[2]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[3]  
[Anonymous], SER ADV MATH APPL SC
[4]   HERMITE INTERPOLATION ERRORS FOR DERIVATIVES [J].
BIRKHOFF, G ;
PRIVER, A .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (04) :440-&
[5]   OPTIMAL ECONOMIC GROWTH AND UNCERTAINTY - DISCOUNTED CASE [J].
BROCK, WA ;
MIRMAN, LJ .
JOURNAL OF ECONOMIC THEORY, 1972, 4 (03) :479-513
[6]  
BROCK WA, 2000, 2026 SSRI DE EC U WI
[7]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122
[8]   An adaptive method with rigorous error control for the Hamilton-Jacobi equations. Part 1: The one-dimensional steady state case [J].
Cockburn, B ;
Yenikaya, B .
APPLIED NUMERICAL MATHEMATICS, 2005, 52 (2-3) :175-195
[9]   SPLINES AND EFFICIENCY IN DYNAMIC-PROGRAMMING [J].
DANIEL, JW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 54 (02) :402-407
[10]   ON A DISCRETE APPROXIMATION OF THE HAMILTON-JACOBI EQUATION OF DYNAMIC-PROGRAMMING [J].
DOLCETTA, IC .
APPLIED MATHEMATICS AND OPTIMIZATION, 1983, 10 (04) :367-377