Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

被引:11
作者
Lin, Zeren [1 ,2 ]
Liu, Zhirong [1 ,3 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Peking Univ, Beijing Natl Lab Mol Sci, Ctr Nanochem, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
HUBBARD-MODEL; CLASSIFICATION; SEMIMETAL; GRAPHENE; SYSTEMS;
D O I
10.1063/1.4936774
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K' in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T-3, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K'. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Flat bands, Dirac cones, and atom dynamics in an optical lattice [J].
Apaja, V. ;
Hyrkas, M. ;
Manninen, M. .
PHYSICAL REVIEW A, 2010, 82 (04)
[2]   Designing Dirac points in two-dimensional lattices [J].
Asano, Kenichi ;
Hotta, Chisa .
PHYSICAL REVIEW B, 2011, 83 (24)
[3]  
Balakrishnan R., 2012, UNIVERSITEX, DOI 10.1007/978-1-4614-4529-6
[4]   Massless Dirac-Weyl fermions in a T3 optical lattice [J].
Bercioux, D. ;
Urban, D. F. ;
Grabert, H. ;
Haeusler, W. .
PHYSICAL REVIEW A, 2009, 80 (06)
[5]   Band touching from real-space topology in frustrated hopping models [J].
Bergman, Doron L. ;
Wu, Congjun ;
Balents, Leon .
PHYSICAL REVIEW B, 2008, 78 (12)
[6]  
Bradley C.J., 1972, MATH THEORY SYMMETRY
[7]   Feshbach resonances in ultracold gases [J].
Chin, Cheng ;
Grimm, Rudolf ;
Julienne, Paul ;
Tiesinga, Eite .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1225-1286
[8]   Topological phases for fermionic cold atoms on the Lieb lattice [J].
Goldman, N. ;
Urban, D. F. ;
Bercioux, D. .
PHYSICAL REVIEW A, 2011, 83 (06)
[9]   Isolated flat bands and spin-1 conical bands in two-dimensional lattices [J].
Green, Dmitry ;
Santos, Luiz ;
Chamon, Claudio .
PHYSICAL REVIEW B, 2010, 82 (07)
[10]  
Harrison W. A., 1989, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond