Differential-Forms-Motivated Discretizations of Electromagnetic Differential and Integral Equations

被引:12
作者
Dai, Qi I. [1 ]
Chew, Weng Cho [1 ]
Jiang, Li Jun [2 ]
Wu, Yumao [3 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
[3] Fudan Univ, Key Lab Informat Sci Electromagnet Waves MoE, Shanghai 200433, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2014年 / 13卷
基金
美国国家科学基金会;
关键词
Calderon projection; differential equations; differential forms; integral equations; variational analysis;
D O I
10.1109/LAWP.2014.2332300
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we present a differential-forms-motivated procedure to unify and guide discretizations of differential and integral equations in computational electromagnetics (CEM). In order to solve such equations accurately, it is crucial to find an appropriate matrix representation of the governing differential or integral operator. Differential forms theory inspires a general procedure of selecting both expansion and test functions wisely. Many well-functioning discretizations in finite element method (FEM) and boundary element method (BEM) can be reinterpreted with this theory. Moreoever, our approach offers guidance for discretizing complicated problems where straightforward discretizations may not be available.
引用
收藏
页码:1223 / 1226
页数:4
相关论文
共 20 条
[1]   A multiplicative Calderon preconditioner for the electric field integral equation [J].
Andriulli, Francesco P. ;
Cools, Kristof ;
Bagci, Hakan ;
Olyslager, Femke ;
Buffa, Annalisa ;
Christiansen, Snorre ;
Michielssen, Eric .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) :2398-2412
[2]  
Bossavit A., 1988, IEE PROC-A, V135, P493, DOI DOI 10.1049/IP-A-1.1988.0077
[3]   A dual finite element complex on the barycentric refinement [J].
Buffa, Annalisa ;
Christiansen, Snorre H. .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1743-1769
[4]   Quadrilateral Barycentric Basis Functions for Surface Integral Equations [J].
Chang, Ruinan ;
Lomakin, Vitaliy .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (12) :6039-6050
[5]  
Chen Q., 1990, P ANT PROP SOC INT S, P590
[6]  
Chew W. C., 1995, Waves and Fields in Inhomogeneous Media
[7]  
Cools K., 2009, IEEE Antennas and Propagation Society International Symposium, P1
[8]   DIFFERENTIAL FORMS INSPIRED DISCRETIZATION FOR FINITE ELEMENT ANALYSIS OF INHOMOGENEOUS WAVEGUIDES [J].
Dai, Qi I. ;
Chew, Weng Cho ;
Jiang, Li Jun .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 143 :745-760
[9]   ELECTROMAGNETICS AND DIFFERENTIAL FORMS [J].
DESCHAMPS, GA .
PROCEEDINGS OF THE IEEE, 1981, 69 (06) :676-696
[10]   On the degrees of freedom of lattice electrodynamics [J].
He, B ;
Teixeira, FL .
PHYSICS LETTERS A, 2005, 336 (01) :1-7